AP_Math: refactor quaternion library

This commit is contained in:
Jonathan Challinger 2014-10-12 20:41:13 -07:00 committed by Andrew Tridgell
parent baad65bafc
commit 1f7e393e38
2 changed files with 165 additions and 27 deletions

View File

@ -32,15 +32,15 @@ void Quaternion::rotation_matrix(Matrix3f &m) const
float q1q4 = q1 * q4;
float q4q4 = q4 * q4;
m.a.x = 1-2*(q3q3 + q4q4);
m.a.y = 2*(q2q3 - q1q4);
m.a.z = 2*(q2q4 + q1q3);
m.b.x = 2*(q2q3 + q1q4);
m.b.y = 1-2*(q2q2 + q4q4);
m.b.z = 2*(q3q4 - q1q2);
m.c.x = 2*(q2q4 - q1q3);
m.c.y = 2*(q3q4 + q1q2);
m.c.z = 1-2*(q2q2 + q3q3);
m.a.x = 1.0f-2.0f*(q3q3 + q4q4);
m.a.y = 2.0f*(q2q3 - q1q4);
m.a.z = 2.0f*(q2q4 + q1q3);
m.b.x = 2.0f*(q2q3 + q1q4);
m.b.y = 1.0f-2.0f*(q2q2 + q4q4);
m.b.z = 2.0f*(q3q4 - q1q2);
m.c.x = 2.0f*(q2q4 - q1q3);
m.c.y = 2.0f*(q3q4 + q1q2);
m.c.z = 1.0f-2.0f*(q2q2 + q3q3);
}
// return the rotation matrix equivalent for this quaternion
@ -95,12 +95,8 @@ void Quaternion::from_rotation_matrix(const Matrix3f &m)
void Quaternion::earth_to_body(Vector3f &v) const
{
Matrix3f m;
// we reverse z before and afterwards because of the differing
// quaternion conventions from APM conventions.
v.z = -v.z;
rotation_matrix(m);
v = m * v;
v.z = -v.z;
}
// create a quaternion from Euler angles
@ -119,21 +115,98 @@ void Quaternion::from_euler(float roll, float pitch, float yaw)
q4 = cr2*cp2*sy2 - sr2*sp2*cy2;
}
void Quaternion::from_axis_angle(Vector3f v) {
float theta = v.length();
if(theta == 0.0f) {
q1 = 1.0f;
q2=q3=q4=0.0f;
}
v /= theta;
from_axis_angle(v,theta);
}
void Quaternion::from_axis_angle(Vector3f axis, float theta) {
if(theta == 0.0f) {
q1 = 1.0f;
q2=q3=q4=0.0f;
}
float st2 = sinf(theta/2.0f);
q1 = cos(theta/2.0f);
q2 = axis.x * st2;
q3 = axis.y * st2;
q4 = axis.z * st2;
}
void Quaternion::rotate(Vector3f v) {
Quaternion r;
r.from_axis_angle(v);
(*this) *= r;
}
void Quaternion::to_axis_angle(Vector3f &v) {
float l = sqrt(sq(q2)+sq(q3)+sq(q4));
v = Vector3f(q2,q3,q4);
if(l != 0) {
v /= l;
v *= wrap_PI(2.0f * atan2(l,q1));
}
}
void Quaternion::from_axis_angle_fast(Vector3f v) {
float theta = v.length();
if(theta == 0.0f) {
q1 = 1.0f;
q2=q3=q4=0.0f;
}
v /= theta;
from_axis_angle_fast(v,theta);
}
void Quaternion::from_axis_angle_fast(Vector3f axis, float theta) {
float t2 = theta/2.0f;
float sqt2 = sq(t2);
float st2 = t2-sqt2*t2/6.0f;
q1 = 1.0f-(sqt2/2.0f)+sq(sqt2)/24.0f;
q2 = axis.x * st2;
q3 = axis.y * st2;
q4 = axis.z * st2;
}
void Quaternion::rotate_fast(const Vector3f &v) {
float theta = v.length();
if(theta == 0.0f) return;
float t2 = theta/2.0f;
float sqt2 = sq(t2);
float st2 = t2-sqt2*t2/6.0f;
st2 /= theta;
//"rotation quaternion"
float w2 = 1.0f-(sqt2/2.0f)+sq(sqt2)/24.0f;
float x2 = v.x * st2;
float y2 = v.y * st2;
float z2 = v.z * st2;
//copy our quaternion
float w1 = q1;
float x1 = q2;
float y1 = q3;
float z1 = q4;
//do the multiply into our quaternion
q1 = w1*w2 - x1*x2 - y1*y2 - z1*z2;
q2 = w1*x2 + x1*w2 + y1*z2 - z1*y2;
q3 = w1*y2 - x1*z2 + y1*w2 + z1*x2;
q4 = w1*z2 + x1*y2 - y1*x2 + z1*w2;
}
// create eulers from a quaternion
void Quaternion::to_euler(float *roll, float *pitch, float *yaw) const
void Quaternion::to_euler(float &roll, float &pitch, float &yaw) const
{
if (roll) {
*roll = (atan2f(2.0f*(q1*q2 + q3*q4),
1 - 2.0f*(q2*q2 + q3*q3)));
}
if (pitch) {
// we let safe_asin() handle the singularities near 90/-90 in pitch
*pitch = safe_asin(2.0f*(q1*q3 - q4*q2));
}
if (yaw) {
*yaw = atan2f(2.0f*(q1*q4 + q2*q3),
1 - 2.0f*(q3*q3 + q4*q4));
}
roll = (atan2f(2.0f*(q1*q2 + q3*q4), 1 - 2.0f*(q2*q2 + q3*q3)));
pitch = safe_asin(2.0f*(q1*q3 - q4*q2));
yaw = atan2f(2.0f*(q1*q4 + q2*q3), 1 - 2.0f*(q3*q3 + q4*q4));
}
float Quaternion::length(void) const
@ -141,6 +214,11 @@ float Quaternion::length(void) const
return sqrtf(sq(q1) + sq(q2) + sq(q3) + sq(q4));
}
Quaternion Quaternion::inverse(void) const
{
return Quaternion(q1, -q2, -q3, -q4);
}
void Quaternion::normalize(void)
{
float quatMag = length();
@ -153,3 +231,42 @@ void Quaternion::normalize(void)
q4 *= quatMagInv;
}
}
Quaternion Quaternion::operator*(Quaternion v) {
Quaternion ret;
float &w1 = q1;
float &x1 = q2;
float &y1 = q3;
float &z1 = q4;
float &w2 = v.q1;
float &x2 = v.q2;
float &y2 = v.q3;
float &z2 = v.q4;
ret.q1 = w1*w2 - x1*x2 - y1*y2 - z1*z2;
ret.q2 = w1*x2 + x1*w2 + y1*z2 - z1*y2;
ret.q3 = w1*y2 - x1*z2 + y1*w2 + z1*x2;
ret.q4 = w1*z2 + x1*y2 - y1*x2 + z1*w2;
return ret;
}
Quaternion &Quaternion::operator*=(Quaternion v) {
float w1 = q1;
float x1 = q2;
float y1 = q3;
float z1 = q4;
float &w2 = v.q1;
float &x2 = v.q2;
float &y2 = v.q3;
float &z2 = v.q4;
q1 = w1*w2 - x1*x2 - y1*y2 - z1*z2;
q2 = w1*x2 + x1*w2 + y1*z2 - z1*y2;
q3 = w1*y2 - x1*z2 + y1*w2 + z1*x2;
q4 = w1*z2 + x1*y2 - y1*x2 + z1*w2;
return *this;
}

View File

@ -15,6 +15,7 @@
*/
// Copyright 2012 Andrew Tridgell, all rights reserved.
// Refactored by Jonathan Challinger
#ifndef QUATERNION_H
#define QUATERNION_H
@ -63,12 +64,29 @@ public:
// create a quaternion from Euler angles
void from_euler(float roll, float pitch, float yaw);
void to_axis_angle(Vector3f &v);
void from_axis_angle(Vector3f v);
void from_axis_angle(Vector3f axis, float theta);
void rotate(Vector3f v);
void from_axis_angle_fast(Vector3f v);
void from_axis_angle_fast(Vector3f axis, float theta);
void rotate_fast(const Vector3f &v);
// create eulers from a quaternion
void to_euler(float *roll, float *pitch, float *yaw) const;
void to_euler(float &roll, float &pitch, float &yaw) const;
float length(void) const;
void normalize();
Quaternion inverse(void) const;
// allow a quaternion to be used as an array, 0 indexed
float & operator[](uint8_t i) {
float *_v = &q1;
@ -85,5 +103,8 @@ public:
#endif
return _v[i];
}
Quaternion operator*(Quaternion v);
Quaternion &operator*=(Quaternion v);
};
#endif // QUATERNION_H