Major update including AP_Var support.

Most of the compass functionality is now abstracted in a base class, with the various sub-classes implementing just their unique functionality.

git-svn-id: https://arducopter.googlecode.com/svn/trunk@1647 f9c3cf11-9bcb-44bc-f272-b75c42450872
This commit is contained in:
DrZiplok@gmail.com 2011-02-14 04:25:20 +00:00
parent 90bae93a50
commit 1f04ecbfdb
8 changed files with 281 additions and 333 deletions

View File

@ -11,121 +11,15 @@
#include "AP_Compass_HIL.h"
// Constructors ////////////////////////////////////////////////////////////////
AP_Compass_HIL::AP_Compass_HIL() : orientation(0), declination(0.0)
{
// mag x y z offset initialisation
memset(offset, 0, sizeof(offset));
// initialise orientation matrix
orientation_matrix = ROTATION_NONE;
}
// Public Methods //////////////////////////////////////////////////////////////
bool AP_Compass_HIL::init(int initialise_wire_lib)
{
unsigned long currentTime = millis(); // record current time
int numAttempts = 0;
int success = 0;
// calibration initialisation
calibration[0] = 1.0;
calibration[1] = 1.0;
calibration[2] = 1.0;
while( success == 0 && numAttempts < 5 )
{
// record number of attempts at initialisation
numAttempts++;
// read values from the compass
read();
delay(10);
// calibrate
if( abs(mag_x) > 500 && abs(mag_x) < 1000 && abs(mag_y) > 500 && abs(mag_y) < 1000 && abs(mag_z) > 500 && abs(mag_z) < 1000)
{
calibration[0] = fabs(715.0 / mag_x);
calibration[1] = fabs(715.0 / mag_y);
calibration[2] = fabs(715.0 / mag_z);
// mark success
success = 1;
}
}
return(success);
}
// Read Sensor data
void AP_Compass_HIL::read()
{
// values set by setHIL function
}
void AP_Compass_HIL::calculate(float roll, float pitch)
{
float headX;
float headY;
float cos_roll;
float sin_roll;
float cos_pitch;
float sin_pitch;
Vector3f rotMagVec;
cos_roll = cos(roll); // Optimizacion, se puede sacar esto de la matriz DCM?
sin_roll = sin(roll);
cos_pitch = cos(pitch);
sin_pitch = sin(pitch);
// rotate the magnetometer values depending upon orientation
if( orientation == 0 )
rotMagVec = Vector3f(mag_x+offset[0],mag_y+offset[1],mag_z+offset[2]);
else
rotMagVec = orientation_matrix*Vector3f(mag_x+offset[0],mag_y+offset[1],mag_z+offset[2]);
// Tilt compensated Magnetic field X component:
headX = rotMagVec.x*cos_pitch+rotMagVec.y*sin_roll*sin_pitch+rotMagVec.z*cos_roll*sin_pitch;
// Tilt compensated Magnetic field Y component:
headY = rotMagVec.y*cos_roll-rotMagVec.z*sin_roll;
// Magnetic heading
heading = atan2(-headY,headX);
// Declination correction (if supplied)
if( declination != 0.0 )
{
heading = heading + declination;
if (heading > M_PI) // Angle normalization (-180 deg, 180 deg)
heading -= (2.0 * M_PI);
else if (heading < -M_PI)
heading += (2.0 * M_PI);
}
// Optimization for external DCM use. Calculate normalized components
heading_x = cos(heading);
heading_y = sin(heading);
}
void AP_Compass_HIL::set_orientation(const Matrix3f &rotation_matrix)
{
orientation_matrix = rotation_matrix;
if( orientation_matrix == ROTATION_NONE )
orientation = 0;
else
orientation = 1;
}
void AP_Compass_HIL::set_offsets(int x, int y, int z)
{
offset[0] = x;
offset[1] = y;
offset[2] = z;
}
void AP_Compass_HIL::set_declination(float radians)
{
declination = radians;
}
// Update raw magnetometer values from HIL data
//
void AP_Compass_HIL::setHIL(float _mag_x, float _mag_y, float _mag_z)
{
// TODO: map floats to raw

View File

@ -1,29 +1,16 @@
#ifndef AP_Compass_HIL_H
#define AP_Compass_HIL_H
#include <Compass.h>
#include "AP_Compass_HMC5843.h" // to get #defines since we are modelling this
#include "WProgram.h"
#include "Compass.h"
class AP_Compass_HIL : public Compass
{
public:
AP_Compass_HIL(); // Constructor
bool init(int initialise_wire_lib = 1);
void read();
void calculate(float roll, float pitch);
void set_orientation(const Matrix3f &rotation_matrix);
void set_offsets(int x, int y, int z);
void set_declination(float radians);
void setHIL(float Mag_X, float Mag_Y, float Mag_Z);
AP_Compass_HIL(AP_Var::Key key = AP_Var::k_key_none) : Compass(key) {}
private:
int orientation;
Matrix3f orientation_matrix;
float calibration[3];
int offset[3];
float declination;
virtual bool init();
virtual void read();
void setHIL(float Mag_X, float Mag_Y, float Mag_Z);
};
#endif

View File

@ -10,28 +10,7 @@
Sensor is conected to I2C port
Sensor is initialized in Continuos mode (10Hz)
Variables:
heading : magnetic heading
heading_x : magnetic heading X component
heading_y : magnetic heading Y component
mag_x : Raw X axis magnetometer data
mag_y : Raw Y axis magnetometer data
mag_z : Raw Z axis magnetometer data
last_update : the time of the last successful reading
Methods:
init() : Initialization of I2C and sensor
read() : Read Sensor data
calculate(float roll, float pitch) : Calculate tilt adjusted heading
set_orientation(const Matrix3f &rotation_matrix) : Set orientation of compass
set_offsets(int x, int y, int z) : Set adjustments for HardIron disturbances
set_declination(float radians) : Set heading adjustment between true north and magnetic north
To do : code optimization
Mount position : UPDATED
Big capacitor pointing backward, connector forward
*/
// AVR LibC Includes
@ -52,42 +31,25 @@
#define ContinuousConversion 0x00
#define SingleConversion 0x01
// Constructors ////////////////////////////////////////////////////////////////
AP_Compass_HMC5843::AP_Compass_HMC5843() : orientation(0), declination(0.0)
{
// mag x y z offset initialisation
_offset.x = 0;
_offset.y = 0;
_offset.z = 0;
// initialise orientation matrix
orientation_matrix = ROTATION_NONE;
}
// Public Methods //////////////////////////////////////////////////////////////
bool AP_Compass_HMC5843::init(int initialise_wire_lib)
bool AP_Compass_HMC5843::init()
{
unsigned long currentTime = millis(); // record current time
int numAttempts = 0;
int success = 0;
first_call = 1;
if( initialise_wire_lib != 0 )
Wire.begin();
delay(10);
// calibration initialisation
calibration[0] = 1.0;
calibration[1] = 1.0;
calibration[2] = 1.0;
while( success == 0 && numAttempts < 5 )
{
// record number of attempts at initialisation
numAttempts++;
// force positiveBias (compass should return 715 for all channels)
Wire.beginTransmission(COMPASS_ADDRESS);
Wire.send(ConfigRegA);
@ -95,20 +57,20 @@ bool AP_Compass_HMC5843::init(int initialise_wire_lib)
if (0 != Wire.endTransmission())
continue; // compass not responding on the bus
delay(50);
// set gains
Wire.beginTransmission(COMPASS_ADDRESS);
Wire.send(ConfigRegB);
Wire.send(magGain);
Wire.endTransmission();
delay(10);
delay(10);
Wire.beginTransmission(COMPASS_ADDRESS);
Wire.send(ModeRegister);
Wire.send(SingleConversion);
Wire.endTransmission();
delay(10);
// read values from the compass
read();
delay(10);
@ -119,11 +81,11 @@ bool AP_Compass_HMC5843::init(int initialise_wire_lib)
calibration[0] = fabs(715.0 / mag_x);
calibration[1] = fabs(715.0 / mag_y);
calibration[2] = fabs(715.0 / mag_z);
// mark success
success = 1;
}
// leave test mode
Wire.beginTransmission(COMPASS_ADDRESS);
Wire.send(ConfigRegA);
@ -146,20 +108,20 @@ void AP_Compass_HMC5843::read()
int i = 0;
byte buff[6];
Vector3f rot_mag;
Wire.beginTransmission(COMPASS_ADDRESS);
Wire.beginTransmission(COMPASS_ADDRESS);
Wire.send(0x03); //sends address to read from
Wire.endTransmission(); //end transmission
//Wire.beginTransmission(COMPASS_ADDRESS);
//Wire.beginTransmission(COMPASS_ADDRESS);
Wire.requestFrom(COMPASS_ADDRESS, 6); // request 6 bytes from device
while(Wire.available())
{
while(Wire.available())
{
buff[i] = Wire.receive(); // receive one byte
i++;
}
Wire.endTransmission(); //end transmission
if (i==6) // All bytes received?
{
// MSB byte first, then LSB, X,Y,Z
@ -167,102 +129,13 @@ void AP_Compass_HMC5843::read()
mag_y = ((((int)buff[2]) << 8) | buff[3]) * calibration[1]; // Y axis
mag_z = -((((int)buff[4]) << 8) | buff[5]) * calibration[2]; // Z axis
last_update = millis(); // record time of update
// rotate the magnetometer values depending upon orientation
if( orientation == 0 )
rot_mag = Vector3f(mag_x,mag_y,mag_z);
else
rot_mag = orientation_matrix*Vector3f(mag_x,mag_y,mag_z);
rot_mag = rot_mag + _offset;
// rotate and offset the magnetometer values
// XXX this could well be done in common code...
rot_mag = _orientation_matrix.get() * Vector3f(mag_x,mag_y,mag_z);
rot_mag = rot_mag + _offset.get();
mag_x = rot_mag.x;
mag_y = rot_mag.y;
mag_z = rot_mag.z;
}
}
void AP_Compass_HMC5843::calculate(float roll, float pitch)
{
float headX;
float headY;
float cos_roll;
float sin_roll;
float cos_pitch;
float sin_pitch;
cos_roll = cos(roll); // Optimizacion, se puede sacar esto de la matriz DCM?
sin_roll = 1 - (cos_roll * cos_roll);
cos_pitch = cos(pitch);
sin_pitch = 1 - (cos_pitch * cos_pitch);
// Tilt compensated magnetic field X component:
headX = mag_x*cos_pitch+mag_y*sin_roll*sin_pitch+mag_z*cos_roll*sin_pitch;
// Tilt compensated magnetic field Y component:
headY = mag_y*cos_roll-mag_z*sin_roll;
// magnetic heading
heading = atan2(-headY,headX);
// Declination correction (if supplied)
if( declination != 0.0 )
{
heading = heading + declination;
if (heading > M_PI) // Angle normalization (-180 deg, 180 deg)
heading -= (2.0 * M_PI);
else if (heading < -M_PI)
heading += (2.0 * M_PI);
}
// Optimization for external DCM use. Calculate normalized components
heading_x = cos(heading);
heading_y = sin(heading);
}
void AP_Compass_HMC5843::null_offsets(Matrix3f dcm_matrix)
{
// Update our estimate of the offsets in the magnetometer
Vector3f calc(0.0, 0.0, 0.0);
Matrix3f dcm_new_from_last;
float weight;
Vector3f mag_body_new = Vector3f(mag_x,mag_y,mag_z);
if(!first_call) {
dcm_new_from_last = dcm_matrix.transposed() * last_dcm_matrix; // Note 11/20/2010: transpose() is not working, transposed() is.
weight = 3.0 - fabs(dcm_new_from_last.a.x) - fabs(dcm_new_from_last.b.y) - fabs(dcm_new_from_last.c.z);
if (weight > .001) {
calc = mag_body_new + mag_body_last; // Eq 11 from Bill P's paper
calc -= dcm_new_from_last * mag_body_last;
calc -= dcm_new_from_last.transposed() * mag_body_new;
if(weight > 0.5) weight = 0.5;
calc = calc * (weight);
_offset -= calc;
}
} else {
first_call = 0;
}
mag_body_last = mag_body_new - calc;
last_dcm_matrix = dcm_matrix;
}
void AP_Compass_HMC5843::set_orientation(const Matrix3f &rotation_matrix)
{
orientation_matrix = rotation_matrix;
if( orientation_matrix == ROTATION_NONE )
orientation = 0;
else
orientation = 1;
}
void AP_Compass_HMC5843::set_offsets(int x, int y, int z)
{
_offset.x = x;
_offset.y = y;
_offset.z = z;
}
void AP_Compass_HMC5843::set_declination(float radians)
{
declination = radians;
}

View File

@ -1,26 +1,10 @@
#ifndef AP_Compass_HMC5843_H
#define AP_Compass_HMC5843_H
#include "Compass.h"
#include "../AP_Math/AP_Math.h"
#include <AP_Common.h>
#include <AP_Math.h>
// Rotation matrices
#define ROTATION_NONE Matrix3f(1, 0, 0, 0, 1, 0, 0 ,0, 1)
#define ROTATION_YAW_45 Matrix3f(0.70710678, -0.70710678, 0, 0.70710678, 0.70710678, 0, 0, 0, 1)
#define ROTATION_YAW_90 Matrix3f(0, -1, 0, 1, 0, 0, 0, 0, 1)
#define ROTATION_YAW_135 Matrix3f(-0.70710678, -0.70710678, 0, 0.70710678, -0.70710678, 0, 0, 0, 1)
#define ROTATION_YAW_180 Matrix3f(-1, 0, 0, 0, -1, 0, 0, 0, 1)
#define ROTATION_YAW_225 Matrix3f(-0.70710678, 0.70710678, 0, -0.70710678, -0.70710678, 0, 0, 0, 1)
#define ROTATION_YAW_270 Matrix3f(0, 1, 0, -1, 0, 0, 0, 0, 1)
#define ROTATION_YAW_315 Matrix3f(0.70710678, 0.70710678, 0, -0.70710678, 0.70710678, 0, 0, 0, 1)
#define ROTATION_ROLL_180 Matrix3f(1, 0, 0, 0, -1, 0, 0, 0, -1)
#define ROTATION_ROLL_180_YAW_45 Matrix3f(0.70710678, 0.70710678, 0, 0.70710678, -0.70710678, 0, 0, 0, -1)
#define ROTATION_ROLL_180_YAW_90 Matrix3f(0, 1, 0, 1, 0, 0, 0, 0, -1)
#define ROTATION_ROLL_180_YAW_135 Matrix3f(-0.70710678, 0.70710678, 0, 0.70710678, 0.70710678, 0, 0, 0, -1)
#define ROTATION_PITCH_180 Matrix3f(-1, 0, 0, 0, 1, 0, 0, 0, -1)
#define ROTATION_ROLL_180_YAW_225 Matrix3f(-0.70710678, -0.70710678, 0, -0.70710678, 0.70710678, 0, 0, 0, -1)
#define ROTATION_ROLL_180_YAW_270 Matrix3f(0, -1, 0, -1, 0, 0, 0, 0, -1)
#define ROTATION_ROLL_180_YAW_315 Matrix3f(0.70710678, -0.70710678, 0, -0.70710678, -0.70710678, 0, 0, 0, -1)
#include "Compass.h"
// orientations for DIYDrones magnetometer
#define AP_COMPASS_COMPONENTS_UP_PINS_FORWARD ROTATION_NONE
@ -61,23 +45,10 @@
class AP_Compass_HMC5843 : public Compass
{
private:
int orientation;
Matrix3f orientation_matrix;
Matrix3f last_dcm_matrix;
Vector3f mag_body_last;
bool first_call;
float calibration[3];
Vector3f _offset;
float declination;
public:
AP_Compass_HMC5843(); // Constructor
bool init(int initialiseWireLib = 1);
void read();
void calculate(float roll, float pitch);
void null_offsets(const Matrix3f dcm_matrix);
void set_orientation(const Matrix3f &rotation_matrix);
void set_offsets(int x, int y, int z);
Vector3f get_offsets() {return _offset;};
void set_declination(float radians);
AP_Compass_HMC5843(AP_Var::Key key = AP_Var::k_key_none) : Compass(key) {}
virtual bool init();
virtual void read();
};
#endif

View File

@ -0,0 +1,122 @@
#include "Compass.h"
// Default constructor.
// Note that the Vector/Matrix constructors already implicitly zero
// their values.
//
Compass::Compass(AP_Var::Key key) :
_group(key),
_orientation_matrix(&_group, 0),
_offset(&_group, 1),
_declination(&_group, 2, 0.0),
_null_init_done(false)
{
// Default the orientation matrix to none - will be overridden at group load time
// if an orientation has previously been saved.
_orientation_matrix.set(ROTATION_NONE);
}
// Default init method, just returns success.
//
bool
Compass::init()
{
return true;
}
void
Compass::set_orientation(const Matrix3f &rotation_matrix)
{
_orientation_matrix.set_and_save(rotation_matrix);
}
void
Compass::set_offsets(const Vector3f &offsets)
{
_offset.set(offsets);
}
void
Compass::save_offsets()
{
_offset.save();
}
Vector3f &
Compass::get_offsets()
{
return _offset.get();
}
void
Compass::set_declination(float radians)
{
_declination.set_and_save(radians);
}
void
Compass::calculate(float roll, float pitch)
{
float headX;
float headY;
float cos_roll;
float sin_roll;
float cos_pitch;
float sin_pitch;
cos_roll = cos(roll); // Optimizacion, se puede sacar esto de la matriz DCM?
sin_roll = 1 - (cos_roll * cos_roll);
cos_pitch = cos(pitch);
sin_pitch = 1 - (cos_pitch * cos_pitch);
// Tilt compensated magnetic field X component:
headX = mag_x*cos_pitch+mag_y*sin_roll*sin_pitch+mag_z*cos_roll*sin_pitch;
// Tilt compensated magnetic field Y component:
headY = mag_y*cos_roll-mag_z*sin_roll;
// magnetic heading
heading = atan2(-headY,headX);
// Declination correction (if supplied)
if( fabs(_declination) > 0.0 )
{
heading = heading + _declination;
if (heading > M_PI) // Angle normalization (-180 deg, 180 deg)
heading -= (2.0 * M_PI);
else if (heading < -M_PI)
heading += (2.0 * M_PI);
}
// Optimization for external DCM use. Calculate normalized components
heading_x = cos(heading);
heading_y = sin(heading);
}
void
Compass::null_offsets(const Matrix3f &dcm_matrix)
{
// Update our estimate of the offsets in the magnetometer
Vector3f calc(0.0, 0.0, 0.0); // XXX should be safe to remove explicit init here as the default ctor should do the right thing
Matrix3f dcm_new_from_last;
float weight;
Vector3f mag_body_new = Vector3f(mag_x,mag_y,mag_z);
if(_null_init_done) {
dcm_new_from_last = dcm_matrix.transposed() * _last_dcm_matrix; // Note 11/20/2010: transpose() is not working, transposed() is.
weight = 3.0 - fabs(dcm_new_from_last.a.x) - fabs(dcm_new_from_last.b.y) - fabs(dcm_new_from_last.c.z);
if (weight > .001) {
calc = mag_body_new + _mag_body_last; // Eq 11 from Bill P's paper
calc -= dcm_new_from_last * _mag_body_last;
calc -= dcm_new_from_last.transposed() * mag_body_new;
if(weight > 0.5) weight = 0.5;
calc = calc * (weight);
_offset.set(_offset.get() - calc);
}
} else {
_null_init_done = true;
}
_mag_body_last = mag_body_new - calc;
_last_dcm_matrix = dcm_matrix;
}

View File

@ -2,24 +2,120 @@
#define Compass_h
#include <inttypes.h>
#include "../AP_Math/AP_Math.h"
#include <AP_Common.h>
#include <AP_Math.h>
// standard rotation matrices
#define ROTATION_NONE Matrix3f(1, 0, 0, 0, 1, 0, 0 ,0, 1)
#define ROTATION_YAW_45 Matrix3f(0.70710678, -0.70710678, 0, 0.70710678, 0.70710678, 0, 0, 0, 1)
#define ROTATION_YAW_90 Matrix3f(0, -1, 0, 1, 0, 0, 0, 0, 1)
#define ROTATION_YAW_135 Matrix3f(-0.70710678, -0.70710678, 0, 0.70710678, -0.70710678, 0, 0, 0, 1)
#define ROTATION_YAW_180 Matrix3f(-1, 0, 0, 0, -1, 0, 0, 0, 1)
#define ROTATION_YAW_225 Matrix3f(-0.70710678, 0.70710678, 0, -0.70710678, -0.70710678, 0, 0, 0, 1)
#define ROTATION_YAW_270 Matrix3f(0, 1, 0, -1, 0, 0, 0, 0, 1)
#define ROTATION_YAW_315 Matrix3f(0.70710678, 0.70710678, 0, -0.70710678, 0.70710678, 0, 0, 0, 1)
#define ROTATION_ROLL_180 Matrix3f(1, 0, 0, 0, -1, 0, 0, 0, -1)
#define ROTATION_ROLL_180_YAW_45 Matrix3f(0.70710678, 0.70710678, 0, 0.70710678, -0.70710678, 0, 0, 0, -1)
#define ROTATION_ROLL_180_YAW_90 Matrix3f(0, 1, 0, 1, 0, 0, 0, 0, -1)
#define ROTATION_ROLL_180_YAW_135 Matrix3f(-0.70710678, 0.70710678, 0, 0.70710678, 0.70710678, 0, 0, 0, -1)
#define ROTATION_PITCH_180 Matrix3f(-1, 0, 0, 0, 1, 0, 0, 0, -1)
#define ROTATION_ROLL_180_YAW_225 Matrix3f(-0.70710678, -0.70710678, 0, -0.70710678, 0.70710678, 0, 0, 0, -1)
#define ROTATION_ROLL_180_YAW_270 Matrix3f(0, -1, 0, -1, 0, 0, 0, 0, -1)
#define ROTATION_ROLL_180_YAW_315 Matrix3f(0.70710678, -0.70710678, 0, -0.70710678, -0.70710678, 0, 0, 0, -1)
class Compass
{
public:
int mag_x;
int mag_y;
int mag_z;
float heading;
float heading_x;
float heading_y;
unsigned long last_update;
virtual bool init(int initialise_wire_lib = 1) = 0;
public:
int mag_x; ///< magnetic field strength along the X axis
int mag_y; ///< magnetic field strength along the Y axis
int mag_z; ///< magnetic field strength along the Z axis
float heading; ///< compass heading in radians
float heading_x; ///< compass vector X magnitude
float heading_y; ///< compass vector Y magnitude
unsigned long last_update; ///< millis() time of last update
/// Constructor
///
/// @param key Storage key used for configuration data.
///
Compass(AP_Var::Key key);
/// Initialize the compass device.
///
/// @returns True if the compass was initialized OK, false if it was not
/// found or is not functioning.
///
virtual bool init();
/// Read the compass and update the mag_ variables.
///
virtual void read() = 0;
virtual void calculate(float roll, float pitch) = 0;
virtual void set_orientation(const Matrix3f &rotation_matrix) = 0;
virtual void set_offsets(int x, int y, int z) = 0;
virtual void set_declination(float radians) = 0;
/// Calculate the tilt-compensated heading_ variables.
///
/// @param roll The current airframe roll angle.
/// @param pitch The current airframe pitch angle.
///
virtual void calculate(float roll, float pitch);
/// Set the compass orientation matrix, used to correct for
/// various compass mounting positions.
///
/// @param rotation_matrix Rotation matrix to transform magnetometer readings
/// to the body frame.
///
virtual void set_orientation(const Matrix3f &rotation_matrix);
/// Sets the compass offset x/y/z values.
///
/// @param offsets Offsets to the raw mag_ values.
///
virtual void set_offsets(const Vector3f &offsets);
/// Saves the current compass offset x/y/z values.
///
/// This should be invoked periodically to save the offset values maintained by
/// ::null_offsets.
///
virtual void save_offsets();
/// Returns the current offset values
///
/// @returns The current compass offsets.
///
virtual Vector3f &get_offsets();
/// Program new offset values.
///
/// XXX DEPRECATED
///
/// @param x Offset to the raw mag_x value.
/// @param y Offset to the raw mag_y value.
/// @param z Offset to the raw mag_z value.
///
void set_offsets(int x, int y, int z) { set_offsets(Vector3f(x, y, z)); }
/// Perform automatic offset updates using the results of the DCM matrix.
///
/// @param dcm_matrix The DCM result matrix.
///
void null_offsets(const Matrix3f &dcm_matrix);
/// Sets the local magnetic field declination.
///
/// @param radians Local field declination.
///
virtual void set_declination(float radians);
protected:
AP_Var_group _group; ///< storage group holding the compass' calibration data
AP_VarS<Matrix3f> _orientation_matrix;
AP_VarS<Vector3f> _offset;
AP_Float _declination;
bool _null_init_done; ///< first-time-around flag used by offset nulling
Matrix3f _last_dcm_matrix; ///< previous DCM matrix used by offset nulling
Vector3f _mag_body_last; ///< ?? used by offset nulling
};
#endif

View File

@ -3,9 +3,11 @@
Code by Jordi MuÒoz and Jose Julio. DIYDrones.com
*/
#include <Wire.h>
#include <FastSerial.h>
#include <AP_Common.h>
#include <AP_Compass.h> // Compass Library
#include <AP_Math.h> // ArduPilot Mega Vector/Matrix math Library
#include <Wire.h>
#define ToRad(x) (x*0.01745329252) // *pi/180
#define ToDeg(x) (x*57.2957795131) // *180/pi
@ -19,12 +21,13 @@ void setup()
{
Serial.begin(38400);
Serial.println("Compass library test (HMC5843)");
Wire.begin();
compass.init(); // Initialization
compass.set_orientation(AP_COMPASS_COMPONENTS_UP_PINS_FORWARD); // set compass's orientation on aircraft
compass.set_offsets(0,0,0); // set offsets to account for surrounding interference
compass.set_declination(ToRad(0.0)); // set local difference between magnetic north and true north
delay(1000);
timer = millis();
}
@ -32,13 +35,13 @@ void setup()
void loop()
{
static float min[3], max[3], offset[3];
if((millis()- timer) > 100)
{
timer = millis();
compass.read();
compass.calculate(0,0); // roll = 0, pitch = 0 for this example
// capture min
if( compass.mag_x < min[0] )
min[0] = compass.mag_x;
@ -46,7 +49,7 @@ void loop()
min[1] = compass.mag_y;
if( compass.mag_z < min[2] )
min[2] = compass.mag_z;
// capture max
if( compass.mag_x > max[0] )
max[0] = compass.mag_x;
@ -54,12 +57,12 @@ void loop()
max[1] = compass.mag_y;
if( compass.mag_z > max[2] )
max[2] = compass.mag_z;
// calculate offsets
offset[0] = -(max[0]+min[0])/2;
offset[1] = -(max[1]+min[1])/2;
offset[2] = -(max[2]+min[2])/2;
// display all to user
Serial.print("Heading:");
Serial.print(ToDeg(compass.heading));
@ -67,7 +70,7 @@ void loop()
Serial.print(compass.mag_x);
Serial.print(",");
Serial.print(compass.mag_y);
Serial.print(",");
Serial.print(",");
Serial.print(compass.mag_z);
Serial.print(")");

View File

@ -0,0 +1,2 @@
BOARD = mega
include ../../../AP_Common/Arduino.mk