AP_NavEKF: Inertial Navigation Code - 24 State EKF

initial version converted from matlab
This commit is contained in:
Paul Riseborough 2013-12-26 09:58:02 +11:00 committed by Andrew Tridgell
parent 03cc777991
commit 1d4b040c67
2 changed files with 2185 additions and 0 deletions

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,221 @@
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
24 state EKF based on https://github.com/priseborough/InertialNav
Converted from Matlab to C++ by Paul Riseborough
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef AP_NavEKF
#define AP_NavEKF
#include <AP_Math.h>
#include <AP_AHRS.h>
#include <AP_Airspeed.h>
#include <AP_InertialSensor.h> // ArduPilot Mega IMU Library
class NavEKF
{
public:
// Constructor - don't know how to do this
//AP_InertialNav( const AP_AHRS* ahrs, AP_Baro* baro, GPS*& gps) :
// _ahrs(ahrs),
// _baro(baro),
// _gps(gps)
// Initialise the filter states from the AHRS and magnetometer data (if present)
void InitialiseFilter();
// Update Filter States - this should be called whenever new IMU data is available
void UpdateFilter();
// return the Lat (rad), long(rad) and height (m) of the reference point
void getRefLLH();
// return the last calculated NED position relative to the reference point (m)
void getPosNED();
// return the last calculated NED velocity (m/s)
void getVelNED();
// return the last calculated Lat (rad), long(rad) and height (m)
void getLLH();
// return the Euler roll, pitch and yaw angle in radians
void getEulAng();
// get the transformation matrix from NED to XYD (body) axes
void getTnb();
// get the transformation matrix from XYZ (body) to NED axes
void getTbn();
// get the quaternions defining the rotation from NED to XYZ (body) axes
void getQuat();
private:
void UpdateStrapdownEquationsNED();
void CovariancePrediction();
void FuseVelposNED();
void FuseMagnetometer();
void FuseAirspeed();
void zeroRows(float covMat[24][24], uint8_t first, uint8_t last);
void zeroCols(float covMat[24][24], uint8_t first, uint8_t last);
void quatNorm(float quatOut[4], float quatIn[4]);
// store staes along with system time stamp in msces
void StoreStates(uint32_t msec);
// recall stste vector stored at closest time to the one specified by msec
void RecallStates(float statesForFusion[24], uint32_t msec);
void quat2Tnb(Mat3f &Tnb, float quat[4]);
void quat2Tbn(Mat3f &Tbn, float quat[4]);
void calcEarthRateNED(Vector3f &omega, float latitude);
void eul2quat(float quat[4], float eul[3]);
void quat2eul(float eul[3],float quat[4]);
void calcvelNED(float velNED[3], float gpsCourse, float gpsGndSpd, float gpsVelD);
void calcposNED(float posNED[3], float lat, float lon, float hgt, float latRef, float lonRef, float hgtRef);
void calcllh(float posNED[3], float lat, float lon, float hgt, float latRef, float lonRef, float hgtRef);
void OnGroundCheck();
void CovarianceInit();
void readIMUData();
void readGpsData();
void readHgtData();
void readMagData();
void readAirSpdData();
void FuseGPS();
void FuseHGT();
void FuseTAS();
void FuseMAG();
#define GRAVITY_MSS 9.80665
#define deg2rad 0.017453292
#define rad2deg 57.295780
#define pi 3.141592657
#define earthRate 0.000072921
#define earthRadius 6378145.0
float KH[24][24]; // intermediate result used for covariance updates
float KHP[24][24]; // intermediate result used for covariance updates
static float P[24][24]; // covariance matrix
float Kfusion[24]; // Kalman gains
static float states[24]; // state matrix
static float storedStates[24][50]; // state vectors stored for the last 50 time steps
uint32_t statetimeStamp[50]; // time stamp for each state vector stored
Vector3f correctedDelAng; // delta angles about the xyz body axes corrected for errors (rad)
Vector3f correctedDelVel; // delta velocities along the XYZ body axes corrected for errors (m/s)
Vector3f summedDelAng; // summed delta angles about the xyz body axes corrected for errors (rad)
Vector3f summedDelVel; // summed delta velocities along the XYZ body axes corrected for errors (m/s)
float accNavMag; // magnitude of navigation accel (- used to adjust GPS obs variance (m/s^2)
Vector3f earthRateNED; // earths angular rate vector in NED (rad/s)
Vector3f dVelIMU; // delta velocity vector in XYZ body axes measured by the IMU (m/s)
Vector3f dAngIMU; // delta angle vector in XYZ body axes measured by the IMU (rad)
float dtIMU; // time lapsed since the last IMU measurement or covariance update (sec)
float dt; // time lapsed since last covariance prediction
bool onGround = true; // boolean true when the flight vehicle is on the ground (not flying)
bool useAirspeed = true; // boolean true if airspeed data is being used
bool useCompass = true; // boolean true if magnetometer data is being used
uint8_t fusionModeGPS = 0; // 0 = GPS outputs 3D velocity, 1 = GPS outputs 2D velocity, 2 = GPS outputs no velocity
float innovVelPos[6]; // innovation output
float varInnovVelPos[6]; // innovation variance output
bool fuseVelData = false; // this boolean causes the posNE and velNED obs to be fused
bool fusePosData = false; // this boolean causes the posNE and velNED obs to be fused
bool fuseHgtData = false; // this boolean causes the hgtMea obs to be fused
float velNED[3]; // North, East, Down velocity obs (m/s)
float posNE[2]; // North, East position obs (m)
float hgtMea; // measured height (m)
float posNED[3]; // North, East Down position (m)
float statesAtVelTime[24]; // States at the effective measurement time for posNE and velNED measurements
float statesAtPosTime[24]; // States at the effective measurement time for posNE and velNED measurements
float statesAtHgtTime[24]; // States at the effective measurement time for the hgtMea measurement
float innovMag[3]; // innovation output
float varInnovMag[3]; // innovation variance output
bool fuseMagData = false; // boolean true when magnetometer data is to be fused
Vector3f magData; // magnetometer flux radings in X,Y,Z body axes
float statesAtMagMeasTime[24]; // filter satates at the effective measurement time
float innovVtas; // innovation output
float varInnovVtas; // innovation variance output
bool fuseVtasData = false; // boolean true when airspeed data is to be fused
float VtasMeas; // true airspeed measurement (m/s)
float statesAtVtasMeasTime[24]; // filter states at the effective measurement time
float latRef; // WGS-84 latitude of reference point (rad)
float lonRef; // WGS-84 longitude of reference point (rad)
float hgtRef; // WGS-84 height of reference point (m)
Vector3f magBias; // states representing magnetometer bias vector in XYZ body axes
float eulerEst[3]; // Euler angles calculated from filter states
float eulerDif[3]; // difference between Euler angle estimated by EKF and the AHRS solution
const float covTimeStepMax = 0.07; // maximum time allowed between covariance predictions
const float covDelAngMax = 0.05; // maximum delta angle between covariance predictions
bool endOfData = false; //boolean set to true when all files have returned data
// Estimated time delays (msec)
uint32_t msecVelDelay = 300;
uint32_t msecPosDelay = 300;
uint32_t msecHgtDelay = 420;
uint32_t msecMagDelay = 30;
uint32_t msecTasDelay = 200;
// IMU input data variables
float imuIn;
float tempImu[8];
static uint32_t IMUmsec = 0;
// GPS input data variables
float gpsCourse;
float gpsGndSpd;
float gpsVelD;
float gpsLat;
float gpsLon;
float gpsHgt;
bool newDataGps;
uint8_t GPSstatus;
// Magnetometer input data variables
float magIn;
float tempMag[8];
float tempMagPrev[8];
uint32_t MAGframe = 0;
uint32_t MAGtime = 0;
uint32_t lastMAGtime = 0;
bool newDataMag;
// AHRS input data variables
float ahrsEul[3];
// ADS input data variables
float Veas;
float EAS2TAS; // ratio 0f true to equivalent airspeed
bool newAdsData;
};