mirror of https://github.com/ArduPilot/ardupilot
AP_NavEKF: Inertial Navigation Code - 24 State EKF
initial version converted from matlab
This commit is contained in:
parent
03cc777991
commit
1d4b040c67
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,221 @@
|
|||
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
||||
/*
|
||||
24 state EKF based on https://github.com/priseborough/InertialNav
|
||||
|
||||
Converted from Matlab to C++ by Paul Riseborough
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef AP_NavEKF
|
||||
#define AP_NavEKF
|
||||
|
||||
#include <AP_Math.h>
|
||||
#include <AP_AHRS.h>
|
||||
#include <AP_Airspeed.h>
|
||||
#include <AP_InertialSensor.h> // ArduPilot Mega IMU Library
|
||||
|
||||
class NavEKF
|
||||
{
|
||||
public:
|
||||
|
||||
// Constructor - don't know how to do this
|
||||
//AP_InertialNav( const AP_AHRS* ahrs, AP_Baro* baro, GPS*& gps) :
|
||||
// _ahrs(ahrs),
|
||||
// _baro(baro),
|
||||
// _gps(gps)
|
||||
|
||||
// Initialise the filter states from the AHRS and magnetometer data (if present)
|
||||
void InitialiseFilter();
|
||||
// Update Filter States - this should be called whenever new IMU data is available
|
||||
void UpdateFilter();
|
||||
// return the Lat (rad), long(rad) and height (m) of the reference point
|
||||
void getRefLLH();
|
||||
// return the last calculated NED position relative to the reference point (m)
|
||||
void getPosNED();
|
||||
// return the last calculated NED velocity (m/s)
|
||||
void getVelNED();
|
||||
// return the last calculated Lat (rad), long(rad) and height (m)
|
||||
void getLLH();
|
||||
// return the Euler roll, pitch and yaw angle in radians
|
||||
void getEulAng();
|
||||
// get the transformation matrix from NED to XYD (body) axes
|
||||
void getTnb();
|
||||
// get the transformation matrix from XYZ (body) to NED axes
|
||||
void getTbn();
|
||||
// get the quaternions defining the rotation from NED to XYZ (body) axes
|
||||
void getQuat();
|
||||
|
||||
private:
|
||||
|
||||
void UpdateStrapdownEquationsNED();
|
||||
|
||||
void CovariancePrediction();
|
||||
|
||||
void FuseVelposNED();
|
||||
|
||||
void FuseMagnetometer();
|
||||
|
||||
void FuseAirspeed();
|
||||
|
||||
void zeroRows(float covMat[24][24], uint8_t first, uint8_t last);
|
||||
|
||||
void zeroCols(float covMat[24][24], uint8_t first, uint8_t last);
|
||||
|
||||
void quatNorm(float quatOut[4], float quatIn[4]);
|
||||
|
||||
// store staes along with system time stamp in msces
|
||||
void StoreStates(uint32_t msec);
|
||||
|
||||
// recall stste vector stored at closest time to the one specified by msec
|
||||
void RecallStates(float statesForFusion[24], uint32_t msec);
|
||||
|
||||
void quat2Tnb(Mat3f &Tnb, float quat[4]);
|
||||
|
||||
void quat2Tbn(Mat3f &Tbn, float quat[4]);
|
||||
|
||||
void calcEarthRateNED(Vector3f &omega, float latitude);
|
||||
|
||||
void eul2quat(float quat[4], float eul[3]);
|
||||
|
||||
void quat2eul(float eul[3],float quat[4]);
|
||||
|
||||
void calcvelNED(float velNED[3], float gpsCourse, float gpsGndSpd, float gpsVelD);
|
||||
|
||||
void calcposNED(float posNED[3], float lat, float lon, float hgt, float latRef, float lonRef, float hgtRef);
|
||||
|
||||
void calcllh(float posNED[3], float lat, float lon, float hgt, float latRef, float lonRef, float hgtRef);
|
||||
|
||||
void OnGroundCheck();
|
||||
|
||||
void CovarianceInit();
|
||||
|
||||
void readIMUData();
|
||||
|
||||
void readGpsData();
|
||||
|
||||
void readHgtData();
|
||||
|
||||
void readMagData();
|
||||
|
||||
void readAirSpdData();
|
||||
|
||||
void FuseGPS();
|
||||
|
||||
void FuseHGT();
|
||||
|
||||
void FuseTAS();
|
||||
|
||||
void FuseMAG();
|
||||
|
||||
#define GRAVITY_MSS 9.80665
|
||||
#define deg2rad 0.017453292
|
||||
#define rad2deg 57.295780
|
||||
#define pi 3.141592657
|
||||
#define earthRate 0.000072921
|
||||
#define earthRadius 6378145.0
|
||||
float KH[24][24]; // intermediate result used for covariance updates
|
||||
float KHP[24][24]; // intermediate result used for covariance updates
|
||||
static float P[24][24]; // covariance matrix
|
||||
float Kfusion[24]; // Kalman gains
|
||||
static float states[24]; // state matrix
|
||||
static float storedStates[24][50]; // state vectors stored for the last 50 time steps
|
||||
uint32_t statetimeStamp[50]; // time stamp for each state vector stored
|
||||
Vector3f correctedDelAng; // delta angles about the xyz body axes corrected for errors (rad)
|
||||
Vector3f correctedDelVel; // delta velocities along the XYZ body axes corrected for errors (m/s)
|
||||
Vector3f summedDelAng; // summed delta angles about the xyz body axes corrected for errors (rad)
|
||||
Vector3f summedDelVel; // summed delta velocities along the XYZ body axes corrected for errors (m/s)
|
||||
float accNavMag; // magnitude of navigation accel (- used to adjust GPS obs variance (m/s^2)
|
||||
Vector3f earthRateNED; // earths angular rate vector in NED (rad/s)
|
||||
Vector3f dVelIMU; // delta velocity vector in XYZ body axes measured by the IMU (m/s)
|
||||
Vector3f dAngIMU; // delta angle vector in XYZ body axes measured by the IMU (rad)
|
||||
float dtIMU; // time lapsed since the last IMU measurement or covariance update (sec)
|
||||
float dt; // time lapsed since last covariance prediction
|
||||
bool onGround = true; // boolean true when the flight vehicle is on the ground (not flying)
|
||||
bool useAirspeed = true; // boolean true if airspeed data is being used
|
||||
bool useCompass = true; // boolean true if magnetometer data is being used
|
||||
uint8_t fusionModeGPS = 0; // 0 = GPS outputs 3D velocity, 1 = GPS outputs 2D velocity, 2 = GPS outputs no velocity
|
||||
float innovVelPos[6]; // innovation output
|
||||
float varInnovVelPos[6]; // innovation variance output
|
||||
bool fuseVelData = false; // this boolean causes the posNE and velNED obs to be fused
|
||||
bool fusePosData = false; // this boolean causes the posNE and velNED obs to be fused
|
||||
bool fuseHgtData = false; // this boolean causes the hgtMea obs to be fused
|
||||
float velNED[3]; // North, East, Down velocity obs (m/s)
|
||||
float posNE[2]; // North, East position obs (m)
|
||||
float hgtMea; // measured height (m)
|
||||
float posNED[3]; // North, East Down position (m)
|
||||
float statesAtVelTime[24]; // States at the effective measurement time for posNE and velNED measurements
|
||||
float statesAtPosTime[24]; // States at the effective measurement time for posNE and velNED measurements
|
||||
float statesAtHgtTime[24]; // States at the effective measurement time for the hgtMea measurement
|
||||
float innovMag[3]; // innovation output
|
||||
float varInnovMag[3]; // innovation variance output
|
||||
bool fuseMagData = false; // boolean true when magnetometer data is to be fused
|
||||
Vector3f magData; // magnetometer flux radings in X,Y,Z body axes
|
||||
float statesAtMagMeasTime[24]; // filter satates at the effective measurement time
|
||||
float innovVtas; // innovation output
|
||||
float varInnovVtas; // innovation variance output
|
||||
bool fuseVtasData = false; // boolean true when airspeed data is to be fused
|
||||
float VtasMeas; // true airspeed measurement (m/s)
|
||||
float statesAtVtasMeasTime[24]; // filter states at the effective measurement time
|
||||
float latRef; // WGS-84 latitude of reference point (rad)
|
||||
float lonRef; // WGS-84 longitude of reference point (rad)
|
||||
float hgtRef; // WGS-84 height of reference point (m)
|
||||
Vector3f magBias; // states representing magnetometer bias vector in XYZ body axes
|
||||
float eulerEst[3]; // Euler angles calculated from filter states
|
||||
float eulerDif[3]; // difference between Euler angle estimated by EKF and the AHRS solution
|
||||
const float covTimeStepMax = 0.07; // maximum time allowed between covariance predictions
|
||||
const float covDelAngMax = 0.05; // maximum delta angle between covariance predictions
|
||||
bool endOfData = false; //boolean set to true when all files have returned data
|
||||
|
||||
|
||||
// Estimated time delays (msec)
|
||||
uint32_t msecVelDelay = 300;
|
||||
uint32_t msecPosDelay = 300;
|
||||
uint32_t msecHgtDelay = 420;
|
||||
uint32_t msecMagDelay = 30;
|
||||
uint32_t msecTasDelay = 200;
|
||||
|
||||
// IMU input data variables
|
||||
float imuIn;
|
||||
float tempImu[8];
|
||||
static uint32_t IMUmsec = 0;
|
||||
|
||||
// GPS input data variables
|
||||
float gpsCourse;
|
||||
float gpsGndSpd;
|
||||
float gpsVelD;
|
||||
float gpsLat;
|
||||
float gpsLon;
|
||||
float gpsHgt;
|
||||
bool newDataGps;
|
||||
uint8_t GPSstatus;
|
||||
|
||||
// Magnetometer input data variables
|
||||
float magIn;
|
||||
float tempMag[8];
|
||||
float tempMagPrev[8];
|
||||
uint32_t MAGframe = 0;
|
||||
uint32_t MAGtime = 0;
|
||||
uint32_t lastMAGtime = 0;
|
||||
bool newDataMag;
|
||||
|
||||
// AHRS input data variables
|
||||
float ahrsEul[3];
|
||||
|
||||
// ADS input data variables
|
||||
float Veas;
|
||||
float EAS2TAS; // ratio 0f true to equivalent airspeed
|
||||
bool newAdsData;
|
||||
|
||||
};
|
Loading…
Reference in New Issue