mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-22 00:28:30 -04:00
SITL: tradheli - add gas engine model for conventional heli
This commit is contained in:
parent
af17f791bd
commit
1bef3839e5
@ -56,11 +56,15 @@ Helicopter::Helicopter(const char *frame_str) :
|
||||
*/
|
||||
thrust_scale = (mass * GRAVITY_MSS) / (hover_coll * sq(nominal_rpm * 2.0f * M_PI / 60.0f));
|
||||
|
||||
// calculates tail rotor thrust to overcome rotor torque using the lean angle in a hover
|
||||
torque_scale = 0.83f * mass * GRAVITY_MSS * sinf(radians(hover_lean)) * tr_dist / (hover_coll * sq(nominal_rpm * 2.0f * M_PI / 60.0f));
|
||||
// torque with zero collective pitch. Percentage of total +hover torque is based on full scale helicopters.
|
||||
torque_mpog = 1.08f / sq(nominal_rpm * 2.0f * M_PI / 60.0f); // based on separate calculation
|
||||
|
||||
// torque with zero collective pitch. Percentage of total hover torque is based on full scale helicopters.
|
||||
torque_mpog = 0.17f * mass * GRAVITY_MSS * sinf(radians(hover_lean)) * tr_dist / sq(nominal_rpm * 2.0f * M_PI / 60.0f);
|
||||
// torque_max based on power being weight^3/2. Assuming thrust is linear with collective, it can be
|
||||
// determined that max torque would be 3 times hover torque. Then dividing by 1-MPOG_torq to get total torque.
|
||||
torque_max = ((mass * GRAVITY_MSS * sinf(radians(hover_lean)) * tr_dist - torque_mpog * sq(nominal_rpm * 2.0f * M_PI / 60.0f)) * powf(2.0f,1.5f) + torque_mpog * sq(nominal_rpm * 2.0f * M_PI / 60.0f)) / sq(nominal_rpm * 2.0f * M_PI / 60.0f);
|
||||
|
||||
// calculates tail rotor thrust to overcome rotor torque using the lean angle in a hover
|
||||
torque_scale = (torque_max - torque_mpog) / powf(10.0f,1.5f);
|
||||
|
||||
frame_height = 0.1;
|
||||
|
||||
@ -89,7 +93,7 @@ void Helicopter::update(const struct sitl_input &input)
|
||||
float thrust = 0;
|
||||
float thrust_1 = 0;
|
||||
float thrust_2 = 0;
|
||||
float torque_effect_accel = 0;
|
||||
float eng_torque = 0;
|
||||
float lateral_x_thrust = 0;
|
||||
float lateral_y_thrust = 0;
|
||||
|
||||
@ -116,8 +120,6 @@ void Helicopter::update(const struct sitl_input &input)
|
||||
float swash2 = (_servos_delayed[1]-1000) / 1000.0f;
|
||||
float swash3 = (_servos_delayed[2]-1000) / 1000.0f;
|
||||
|
||||
|
||||
|
||||
Vector3f rot_accel;
|
||||
|
||||
switch (frame_type) {
|
||||
@ -139,7 +141,7 @@ void Helicopter::update(const struct sitl_input &input)
|
||||
thrust = thrust_scale * sq(rpm[0] * 0.104667f) * (0.25* (coll - hover_coll) + hover_coll);
|
||||
|
||||
// determine RPM
|
||||
rpm[0] = update_rpm(rpm[0], rsc, torque_effect_accel, coll, dt);
|
||||
rpm[0] = update_rpm(rpm[0], rsc, eng_torque, coll, dt);
|
||||
|
||||
// Calculate rotor tip path plane angle
|
||||
float roll_cyclic = 1.283 * (swash1 - swash2) / cyclic_scalar;
|
||||
@ -154,7 +156,7 @@ void Helicopter::update(const struct sitl_input &input)
|
||||
// rotational acceleration, in rad/s/s, in body frame
|
||||
rot_accel.x = _tpp_angle.x * Lb1s + Lv * velocity_air_bf.y;
|
||||
rot_accel.y = _tpp_angle.y * Ma1s + Mu * velocity_air_bf.x;
|
||||
rot_accel.z = tail_rotor_torque - torque_effect_accel;
|
||||
rot_accel.z = tail_rotor_torque - eng_torque;
|
||||
|
||||
lateral_y_thrust = tail_rotor_thrust / mass + GRAVITY_MSS * _tpp_angle.x + Yv * velocity_air_bf.y;
|
||||
lateral_x_thrust = -1.0f * GRAVITY_MSS * _tpp_angle.y + Xu * velocity_air_bf.x;
|
||||
@ -191,7 +193,7 @@ void Helicopter::update(const struct sitl_input &input)
|
||||
float coll = 3.51 * ((swash1+swash2+swash3) / 3.0f - 0.5f);
|
||||
|
||||
// determine RPM
|
||||
rpm[0] = update_rpm(rpm[0], rsc, torque_effect_accel, coll, dt);
|
||||
rpm[0] = update_rpm(rpm[0], rsc, eng_torque, coll, dt);
|
||||
|
||||
// Calculate rotor tip path plane angle
|
||||
float roll_cyclic = 1.283f * (swash1 - swash2);
|
||||
@ -250,7 +252,7 @@ void Helicopter::update(const struct sitl_input &input)
|
||||
update_rotor_dynamics(gyro, ctrl_pos_2, _tpp_angle_2, dt);
|
||||
|
||||
// determine RPM
|
||||
rpm[0] = update_rpm(rpm[0], rsc, torque_effect_accel, (coll_1 + coll_2) * 0.5f, dt);
|
||||
rpm[0] = update_rpm(rpm[0], rsc, eng_torque, (coll_1 + coll_2) * 0.5f, dt);
|
||||
|
||||
thrust_1 = 0.5f * thrust_scale * sq(rpm[0] * 0.104667f) * (0.25* (coll_1 - hover_coll) + hover_coll);
|
||||
thrust_2 = 0.5f * thrust_scale * sq(rpm[0] * 0.104667f) * (0.25* (coll_2 - hover_coll) + hover_coll);
|
||||
@ -284,7 +286,7 @@ void Helicopter::update(const struct sitl_input &input)
|
||||
thrust = thrust_scale * sq(rpm[0] * 0.104667f) * (0.25* (coll - hover_coll) + hover_coll);
|
||||
|
||||
// determine RPM
|
||||
rpm[0] = update_rpm(rpm[0], rsc, torque_effect_accel, coll, dt);
|
||||
rpm[0] = update_rpm(rpm[0], rsc, eng_torque, coll, dt);
|
||||
|
||||
// Calculate rotor tip path plane angle
|
||||
float roll_cyclic = 1.283 * (swash1 - swash2) / cyclic_scalar;
|
||||
@ -307,7 +309,7 @@ void Helicopter::update(const struct sitl_input &input)
|
||||
// rotational acceleration, in rad/s/s, in body frame
|
||||
rot_accel.x = _tpp_angle.x * Lb1s + Lv * velocity_air_bf.y;
|
||||
rot_accel.y = _tpp_angle.y * Ma1s + Mu * velocity_air_bf.x;
|
||||
rot_accel.z = right_thruster_torque + left_thruster_torque - torque_effect_accel;
|
||||
rot_accel.z = right_thruster_torque + left_thruster_torque - eng_torque;
|
||||
|
||||
lateral_y_thrust = GRAVITY_MSS * _tpp_angle.x + Yv * velocity_air_bf.y;
|
||||
lateral_x_thrust = (right_thruster_force + left_thruster_force) / mass - GRAVITY_MSS * _tpp_angle.y + Xu * velocity_air_bf.x;
|
||||
@ -378,73 +380,133 @@ float Helicopter::update_rpm(float curr_rpm, float throttle, float &engine_torqu
|
||||
{
|
||||
static float rotor_runup_output;
|
||||
static uint8_t motor_status;
|
||||
float accel_scale;
|
||||
float input_torque;
|
||||
float auto_ss_torque;
|
||||
float descent_torque;
|
||||
float rotor_torque;
|
||||
float rpm_dot;
|
||||
float rpm_engine;
|
||||
|
||||
if (throttle > 0.25) {
|
||||
motor_status = 3; // throttle unlimited
|
||||
} else if (motor_status == 3 && throttle <= 0.25 && throttle > 0.15) {
|
||||
motor_status = 2; // autorotational window
|
||||
} else if (throttle <= 0.15) {
|
||||
motor_status = 1; // idle
|
||||
}
|
||||
//use this to make rpm model more realistic
|
||||
accel_scale = 100.0f;
|
||||
input_torque = 0.0f;
|
||||
|
||||
float runup_time = 8.0f;
|
||||
if (motor_status == 2) {
|
||||
runup_time = 2.0f;
|
||||
}
|
||||
// calculate aerodynamic rotor drag torque
|
||||
rotor_torque = (sq(curr_rpm * 0.104667f) * (torque_mpog + torque_scale * powf(fabsf(collective),1.5f))) / izz;
|
||||
|
||||
|
||||
float accel_scale = 100.0f;
|
||||
|
||||
// ramp speed estimate towards control out
|
||||
float runup_increment = dt / runup_time;
|
||||
if (motor_status > 2) {
|
||||
if (rotor_runup_output < 1.0f) {
|
||||
rotor_runup_output += runup_increment;
|
||||
} else {
|
||||
rotor_runup_output = 1.0f;
|
||||
}
|
||||
if (curr_rpm < nominal_rpm - 25.0f) {
|
||||
accel_scale = 2000.0f / runup_time;
|
||||
}
|
||||
}else{
|
||||
if (rotor_runup_output > 0.0f) {
|
||||
rotor_runup_output -= runup_increment * 10.0f; // make ramp down 10 times faster
|
||||
} else {
|
||||
rotor_runup_output = 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
float input_torque = 0.0f;
|
||||
// calculate engine torque just for start up and shutdown of rotor
|
||||
engine_torque = accel_scale * rotor_runup_output * torque_mpog * sq(nominal_rpm * 2.0f * M_PI / 60.0f) / izz;
|
||||
// Calculate autorotation effect on rotor
|
||||
float auto_ss_torque = accel_scale * sq(nominal_rpm * 0.104667f) * torque_mpog / izz;
|
||||
float descent_torque = (velocity_air_bf.z - 7.0) * auto_ss_torque / 7.0f + auto_ss_torque;
|
||||
|
||||
// manage input torque so descent torque combined with engine torque doesn't allow rotor to overspeed
|
||||
if (rotor_runup_output >= 1.0f && curr_rpm > nominal_rpm - 25.0f) {
|
||||
input_torque = engine_torque;
|
||||
} else if (rotor_runup_output <= 0.0f) {
|
||||
input_torque = descent_torque;
|
||||
auto_ss_torque = sq(nominal_rpm * 0.104667f) * torque_mpog / izz;
|
||||
if (is_positive(velocity_air_bf.z)) {
|
||||
descent_torque = (velocity_air_bf.z - 7.0) * auto_ss_torque / 7.0f + auto_ss_torque;
|
||||
} else {
|
||||
input_torque = engine_torque + descent_torque;
|
||||
descent_torque = 0.0f;
|
||||
}
|
||||
float rpm_dot = 0.0f;
|
||||
if (rotor_runup_output <= 0.0f && curr_rpm < 300) {
|
||||
rpm_dot = - 40.0f;
|
||||
if (curr_rpm <= 0.0f) {
|
||||
return 0.0f;
|
||||
|
||||
// calculate max engine torque
|
||||
float engine_torque_max = sq(nominal_rpm * 0.104667f) * torque_max / izz;
|
||||
|
||||
if (gas_heli) {
|
||||
|
||||
// calculate engine RPM. Based off of throttle and it matches rotor RPM at 30% throttle
|
||||
rpm_engine = nominal_rpm * throttle / 0.3f;
|
||||
|
||||
// calculate engine torque. extra 20% given to have a little extra power
|
||||
engine_torque = 1.20f * throttle * engine_torque_max;
|
||||
|
||||
// model clutch on gas heli
|
||||
if (throttle >= 0.15f && rpm_engine > curr_rpm) {
|
||||
input_torque = engine_torque;
|
||||
} else {
|
||||
input_torque = 0.0f;
|
||||
}
|
||||
|
||||
rpm_dot = 0.0f;
|
||||
// help spool down quickly go to zero
|
||||
if (throttle <= 0.15f && curr_rpm < 300) {
|
||||
rpm_dot = - 40.0f;
|
||||
if (curr_rpm <= 0.0f) {
|
||||
rpm_dot = 0.0f;
|
||||
curr_rpm = 0.0f;
|
||||
}
|
||||
} else {
|
||||
rpm_dot = accel_scale * (input_torque + descent_torque - rotor_torque);
|
||||
if (curr_rpm <= 0.0 && !is_positive(rpm_dot)) {
|
||||
rpm_dot = 0.0f;
|
||||
curr_rpm = 0.0f;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
rpm_dot = input_torque - (sq(curr_rpm * 0.104667f) * (accel_scale * torque_mpog )) / izz;
|
||||
if (throttle > 0.25) {
|
||||
motor_status = 3; // throttle unlimited
|
||||
} else if (motor_status == 3 && throttle <= 0.25 && throttle > 0.15) {
|
||||
motor_status = 2; // autorotational window
|
||||
} else if (throttle <= 0.15) {
|
||||
motor_status = 1; // idle
|
||||
}
|
||||
|
||||
float runup_time = 8.0f;
|
||||
if (motor_status == 2) {
|
||||
runup_time = 2.0f;
|
||||
}
|
||||
|
||||
// ramp speed estimate towards control out
|
||||
float runup_increment = dt / runup_time;
|
||||
if (motor_status > 2) {
|
||||
if (rotor_runup_output < 1.0f) {
|
||||
rotor_runup_output += runup_increment;
|
||||
} else {
|
||||
rotor_runup_output = 1.0f;
|
||||
}
|
||||
if (curr_rpm < nominal_rpm - 25.0f) {
|
||||
accel_scale = 2000.0f / runup_time;
|
||||
}
|
||||
}else{
|
||||
if (rotor_runup_output > 0.0f) {
|
||||
rotor_runup_output -= runup_increment * 10.0f; // make ramp down 10 times faster
|
||||
} else {
|
||||
rotor_runup_output = 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
// calculate engine torque just for start up and shutdown of rotor
|
||||
engine_torque = 0.333f * rotor_runup_output * engine_torque_max;
|
||||
|
||||
// manage input torque so descent torque combined with engine torque doesn't allow rotor to overspeed
|
||||
if (rotor_runup_output >= 1.0f && curr_rpm > nominal_rpm - 100.0f) {
|
||||
// want the rpm to seek the nominal rpm so set the input torque to only be that for nominal RPM
|
||||
input_torque = rotor_torque * sq(nominal_rpm / curr_rpm);
|
||||
} else if (rotor_runup_output <= 0.0f) {
|
||||
input_torque = descent_torque;
|
||||
} else {
|
||||
input_torque = engine_torque + descent_torque;
|
||||
}
|
||||
|
||||
rpm_dot = 0.0f;
|
||||
// Help spool down quickly got to zero
|
||||
if (rotor_runup_output <= 0.0f && curr_rpm < 300) {
|
||||
rpm_dot = - 40.0f;
|
||||
if (curr_rpm <= 0.0f) {
|
||||
rpm_dot = 0.0f;
|
||||
curr_rpm = 0.0f;
|
||||
}
|
||||
} else {
|
||||
rpm_dot = accel_scale * (input_torque - rotor_torque);
|
||||
}
|
||||
engine_torque = input_torque;
|
||||
}
|
||||
|
||||
// Calculate main rotor torque effect on body to include thrust effects to determine tail rotor thrust
|
||||
engine_torque = sq(nominal_rpm * 0.104667f) * rotor_runup_output * (torque_mpog + torque_scale * fabsf(collective)) / izz;
|
||||
curr_rpm += rpm_dot * dt;
|
||||
|
||||
return curr_rpm + rpm_dot * dt;
|
||||
return curr_rpm;
|
||||
|
||||
}
|
||||
/*
|
||||
float Helicopter::torque_required(float curr_rpm, float collective)
|
||||
{
|
||||
|
||||
}
|
||||
*/
|
||||
|
||||
// push servo input to buffer
|
||||
void Helicopter::push_to_buffer(const uint16_t servos_input[16])
|
||||
|
@ -41,6 +41,7 @@ protected:
|
||||
|
||||
void update_rotor_dynamics(Vector3f gyros, Vector2f ctrl_pos, Vector2f &tpp_angle, float dt);
|
||||
float update_rpm(float curr_rpm, float throttle, float &engine_torque, float collective, float dt);
|
||||
// float torque_required(float curr_rpm, float collective);
|
||||
|
||||
// buffers to provide time delay
|
||||
struct servos_stored {
|
||||
@ -67,7 +68,7 @@ private:
|
||||
float pitch_rate_max = radians(1400);
|
||||
float yaw_rate_max = radians(1400);
|
||||
float rsc_setpoint = 0.8f;
|
||||
float izz = 0.2f;
|
||||
float izz = 0.2f;
|
||||
float iyy;
|
||||
float tr_dist = 0.85f;
|
||||
float cyclic_scalar = 7.2; // converts swashplate servo ouputs to cyclic blade pitch
|
||||
@ -77,6 +78,7 @@ private:
|
||||
Vector2f _tpp_angle_2;
|
||||
float torque_scale;
|
||||
float torque_mpog;
|
||||
float torque_max;
|
||||
float hover_coll = 5.0f;
|
||||
bool motor_interlock;
|
||||
uint8_t _time_delay;
|
||||
|
Loading…
Reference in New Issue
Block a user