mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-03 06:28:27 -04:00
AP_Landing: new param LAND_TYPE to split current behavior into AP_Landing_Slope.cpp
This commit is contained in:
parent
ac1dced3bf
commit
1a70e2f353
@ -19,7 +19,6 @@
|
||||
|
||||
#include "AP_Landing.h"
|
||||
#include <GCS_MAVLink/GCS.h>
|
||||
#include <AP_HAL/AP_HAL.h>
|
||||
|
||||
// table of user settable parameters
|
||||
const AP_Param::GroupInfo AP_Landing::var_info[] = {
|
||||
@ -132,6 +131,13 @@ const AP_Param::GroupInfo AP_Landing::var_info[] = {
|
||||
// @User: Advanced
|
||||
AP_GROUPINFO("FLAP_PERCNT", 13, AP_Landing, flap_percent, 0),
|
||||
|
||||
// @Param: TYPE
|
||||
// @DisplayName: Auto-landing type
|
||||
// @Description: Specifies the auto-landing type to use
|
||||
// @Values: 0:Standard Glide Slope
|
||||
// @User: Standard
|
||||
AP_GROUPINFO("TYPE", 14, AP_Landing, type, TYPE_STANDARD_GLIDE_SLOPE),
|
||||
|
||||
AP_GROUPEND
|
||||
};
|
||||
|
||||
@ -143,172 +149,20 @@ const AP_Param::GroupInfo AP_Landing::var_info[] = {
|
||||
bool AP_Landing::verify_land(const AP_SpdHgtControl::FlightStage flight_stage, const Location &prev_WP_loc, Location &next_WP_loc, const Location ¤t_loc,
|
||||
const int32_t auto_state_takeoff_altitude_rel_cm, const float height, const float sink_rate, const float wp_proportion, const uint32_t last_flying_ms, const bool is_armed, const bool is_flying, const bool rangefinder_state_in_range, bool &throttle_suppressed)
|
||||
{
|
||||
// we don't 'verify' landing in the sense that it never completes,
|
||||
// so we don't verify command completion. Instead we use this to
|
||||
// adjust final landing parameters
|
||||
|
||||
// when aborting a landing, mimic the verify_takeoff with steering hold. Once
|
||||
// the altitude has been reached, restart the landing sequence
|
||||
if (flight_stage == AP_SpdHgtControl::FLIGHT_LAND_ABORT) {
|
||||
|
||||
throttle_suppressed = false;
|
||||
|
||||
|
||||
complete = false;
|
||||
pre_flare = false;
|
||||
nav_controller->update_heading_hold(get_bearing_cd(prev_WP_loc, next_WP_loc));
|
||||
|
||||
// see if we have reached abort altitude
|
||||
if (adjusted_relative_altitude_cm_fn() > auto_state_takeoff_altitude_rel_cm) {
|
||||
next_WP_loc = current_loc;
|
||||
mission.stop();
|
||||
if (restart_landing_sequence()) {
|
||||
mission.resume();
|
||||
switch (type) {
|
||||
default:
|
||||
case TYPE_STANDARD_GLIDE_SLOPE:
|
||||
return type_slope_verify_land(flight_stage,prev_WP_loc, next_WP_loc, current_loc,
|
||||
auto_state_takeoff_altitude_rel_cm, height,sink_rate, wp_proportion, last_flying_ms, is_armed, is_flying, rangefinder_state_in_range, throttle_suppressed);
|
||||
}
|
||||
// else we're in AUTO with a stopped mission and handle_auto_mode() will set RTL
|
||||
}
|
||||
// make sure to return false so it leaves the mission index alone
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
/* Set land_complete (which starts the flare) under 3 conditions:
|
||||
1) we are within LAND_FLARE_ALT meters of the landing altitude
|
||||
2) we are within LAND_FLARE_SEC of the landing point vertically
|
||||
by the calculated sink rate (if LAND_FLARE_SEC != 0)
|
||||
3) we have gone past the landing point and don't have
|
||||
rangefinder data (to prevent us keeping throttle on
|
||||
after landing if we've had positive baro drift)
|
||||
*/
|
||||
|
||||
// flare check:
|
||||
// 1) below flare alt/sec requires approach stage check because if sec/alt are set too
|
||||
// large, and we're on a hard turn to line up for approach, we'll prematurely flare by
|
||||
// skipping approach phase and the extreme roll limits will make it hard to line up with runway
|
||||
// 2) passed land point and don't have an accurate AGL
|
||||
// 3) probably crashed (ensures motor gets turned off)
|
||||
|
||||
bool on_approach_stage = (flight_stage == AP_SpdHgtControl::FLIGHT_LAND_APPROACH ||
|
||||
flight_stage == AP_SpdHgtControl::FLIGHT_LAND_PREFLARE);
|
||||
bool below_flare_alt = (height <= flare_alt);
|
||||
bool below_flare_sec = (flare_sec > 0 && height <= sink_rate * flare_sec);
|
||||
bool probably_crashed = (aparm.crash_detection_enable && fabsf(sink_rate) < 0.2f && !is_flying);
|
||||
|
||||
if ((on_approach_stage && below_flare_alt) ||
|
||||
(on_approach_stage && below_flare_sec && (wp_proportion > 0.5)) ||
|
||||
(!rangefinder_state_in_range && wp_proportion >= 1) ||
|
||||
probably_crashed) {
|
||||
|
||||
if (!complete) {
|
||||
post_stats = true;
|
||||
if (is_flying && (AP_HAL::millis()-last_flying_ms) > 3000) {
|
||||
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_CRITICAL, "Flare crash detected: speed=%.1f", (double)ahrs.get_gps().ground_speed());
|
||||
} else {
|
||||
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "Flare %.1fm sink=%.2f speed=%.1f dist=%.1f",
|
||||
(double)height, (double)sink_rate,
|
||||
(double)ahrs.get_gps().ground_speed(),
|
||||
(double)get_distance(current_loc, next_WP_loc));
|
||||
}
|
||||
complete = true;
|
||||
update_flight_stage_fn();
|
||||
}
|
||||
|
||||
|
||||
if (ahrs.get_gps().ground_speed() < 3) {
|
||||
// reload any airspeed or groundspeed parameters that may have
|
||||
// been set for landing. We don't do this till ground
|
||||
// speed drops below 3.0 m/s as otherwise we will change
|
||||
// target speeds too early.
|
||||
aparm.airspeed_cruise_cm.load();
|
||||
aparm.min_gndspeed_cm.load();
|
||||
aparm.throttle_cruise.load();
|
||||
}
|
||||
} else if (!complete && !pre_flare && pre_flare_airspeed > 0) {
|
||||
bool reached_pre_flare_alt = pre_flare_alt > 0 && (height <= pre_flare_alt);
|
||||
bool reached_pre_flare_sec = pre_flare_sec > 0 && (height <= sink_rate * pre_flare_sec);
|
||||
if (reached_pre_flare_alt || reached_pre_flare_sec) {
|
||||
pre_flare = true;
|
||||
update_flight_stage_fn();
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
when landing we keep the L1 navigation waypoint 200m ahead. This
|
||||
prevents sudden turns if we overshoot the landing point
|
||||
*/
|
||||
struct Location land_WP_loc = next_WP_loc;
|
||||
int32_t land_bearing_cd = get_bearing_cd(prev_WP_loc, next_WP_loc);
|
||||
location_update(land_WP_loc,
|
||||
land_bearing_cd*0.01f,
|
||||
get_distance(prev_WP_loc, current_loc) + 200);
|
||||
nav_controller->update_waypoint(prev_WP_loc, land_WP_loc);
|
||||
|
||||
// once landed and stationary, post some statistics
|
||||
// this is done before disarm_if_autoland_complete() so that it happens on the next loop after the disarm
|
||||
if (post_stats && !is_armed) {
|
||||
post_stats = false;
|
||||
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "Distance from LAND point=%.2fm", (double)get_distance(current_loc, next_WP_loc));
|
||||
}
|
||||
|
||||
// check if we should auto-disarm after a confirmed landing
|
||||
disarm_if_autoland_complete_fn();
|
||||
|
||||
/*
|
||||
we return false as a landing mission item never completes
|
||||
|
||||
we stay on this waypoint unless the GCS commands us to change
|
||||
mission item, reset the mission, command a go-around or finish
|
||||
a land_abort procedure.
|
||||
*/
|
||||
return false;
|
||||
}
|
||||
|
||||
void AP_Landing::adjust_landing_slope_for_rangefinder_bump(AP_Vehicle::FixedWing::Rangefinder_State &rangefinder_state, Location &prev_WP_loc, Location &next_WP_loc, const Location ¤t_loc, const float wp_distance, int32_t &target_altitude_offset_cm)
|
||||
{
|
||||
// check the rangefinder correction for a large change. When found, recalculate the glide slope. This is done by
|
||||
// determining the slope from your current location to the land point then following that back up to the approach
|
||||
// altitude and moving the prev_wp to that location. From there
|
||||
float correction_delta = fabsf(rangefinder_state.last_stable_correction) - fabsf(rangefinder_state.correction);
|
||||
|
||||
if (slope_recalc_shallow_threshold <= 0 ||
|
||||
fabsf(correction_delta) < slope_recalc_shallow_threshold) {
|
||||
return;
|
||||
}
|
||||
|
||||
rangefinder_state.last_stable_correction = rangefinder_state.correction;
|
||||
|
||||
float corrected_alt_m = (adjusted_altitude_cm_fn() - next_WP_loc.alt)*0.01f - rangefinder_state.correction;
|
||||
float total_distance_m = get_distance(prev_WP_loc, next_WP_loc);
|
||||
float top_of_glide_slope_alt_m = total_distance_m * corrected_alt_m / wp_distance;
|
||||
prev_WP_loc.alt = top_of_glide_slope_alt_m*100 + next_WP_loc.alt;
|
||||
|
||||
// re-calculate auto_state.land_slope with updated prev_WP_loc
|
||||
setup_landing_glide_slope(prev_WP_loc, next_WP_loc, current_loc, target_altitude_offset_cm);
|
||||
|
||||
if (rangefinder_state.correction >= 0) { // we're too low or object is below us
|
||||
// correction positive means we're too low so we should continue on with
|
||||
// the newly computed shallower slope instead of pitching/throttling up
|
||||
|
||||
} else if (slope_recalc_steep_threshold_to_abort > 0 && !has_aborted_due_to_slope_recalc) {
|
||||
// correction negative means we're too high and need to point down (and speed up) to re-align
|
||||
// to land on target. A large negative correction means we would have to dive down a lot and will
|
||||
// generating way too much speed that we can not bleed off in time. It is better to remember
|
||||
// the large baro altitude offset and abort the landing to come around again with the correct altitude
|
||||
// offset and "perfect" slope.
|
||||
|
||||
// calculate projected slope with projected alt
|
||||
float new_slope_deg = degrees(atan(slope));
|
||||
float initial_slope_deg = degrees(atan(initial_slope));
|
||||
|
||||
// is projected slope too steep?
|
||||
if (new_slope_deg - initial_slope_deg > slope_recalc_steep_threshold_to_abort) {
|
||||
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "Steep landing slope (%.0fm %.1fdeg)",
|
||||
(double)rangefinder_state.correction, (double)(new_slope_deg - initial_slope_deg));
|
||||
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "aborting landing!");
|
||||
alt_offset = rangefinder_state.correction;
|
||||
commanded_go_around = true;
|
||||
has_aborted_due_to_slope_recalc = true; // only allow this once.
|
||||
}
|
||||
switch (type) {
|
||||
default:
|
||||
case TYPE_STANDARD_GLIDE_SLOPE:
|
||||
type_slope_adjust_landing_slope_for_rangefinder_bump(rangefinder_state, prev_WP_loc, next_WP_loc, current_loc, wp_distance, target_altitude_offset_cm);
|
||||
}
|
||||
}
|
||||
|
||||
@ -323,89 +177,11 @@ void AP_Landing::adjust_landing_slope_for_rangefinder_bump(AP_Vehicle::FixedWing
|
||||
|
||||
void AP_Landing::setup_landing_glide_slope(const Location &prev_WP_loc, const Location &next_WP_loc, const Location ¤t_loc, int32_t &target_altitude_offset_cm)
|
||||
{
|
||||
float total_distance = get_distance(prev_WP_loc, next_WP_loc);
|
||||
|
||||
// If someone mistakenly puts all 0's in their LAND command then total_distance
|
||||
// will be calculated as 0 and cause a divide by 0 error below. Lets avoid that.
|
||||
if (total_distance < 1) {
|
||||
total_distance = 1;
|
||||
switch (type) {
|
||||
default:
|
||||
case TYPE_STANDARD_GLIDE_SLOPE:
|
||||
type_slope_setup_landing_glide_slope(prev_WP_loc, next_WP_loc, current_loc, target_altitude_offset_cm);
|
||||
}
|
||||
|
||||
// height we need to sink for this WP
|
||||
float sink_height = (prev_WP_loc.alt - next_WP_loc.alt)*0.01f;
|
||||
|
||||
// current ground speed
|
||||
float groundspeed = ahrs.groundspeed();
|
||||
if (groundspeed < 0.5f) {
|
||||
groundspeed = 0.5f;
|
||||
}
|
||||
|
||||
// calculate time to lose the needed altitude
|
||||
float sink_time = total_distance / groundspeed;
|
||||
if (sink_time < 0.5f) {
|
||||
sink_time = 0.5f;
|
||||
}
|
||||
|
||||
// find the sink rate needed for the target location
|
||||
float sink_rate = sink_height / sink_time;
|
||||
|
||||
// the height we aim for is the one to give us the right flare point
|
||||
float aim_height = flare_sec * sink_rate;
|
||||
if (aim_height <= 0) {
|
||||
aim_height = flare_alt;
|
||||
}
|
||||
|
||||
// don't allow the aim height to be too far above LAND_FLARE_ALT
|
||||
if (flare_alt > 0 && aim_height > flare_alt*2) {
|
||||
aim_height = flare_alt*2;
|
||||
}
|
||||
|
||||
// calculate slope to landing point
|
||||
bool is_first_calc = is_zero(slope);
|
||||
slope = (sink_height - aim_height) / total_distance;
|
||||
if (is_first_calc) {
|
||||
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "Landing glide slope %.1f degrees", (double)degrees(atanf(slope)));
|
||||
}
|
||||
|
||||
|
||||
// time before landing that we will flare
|
||||
float flare_time = aim_height / SpdHgt_Controller->get_land_sinkrate();
|
||||
|
||||
// distance to flare is based on ground speed, adjusted as we
|
||||
// get closer. This takes into account the wind
|
||||
float flare_distance = groundspeed * flare_time;
|
||||
|
||||
// don't allow the flare before half way along the final leg
|
||||
if (flare_distance > total_distance/2) {
|
||||
flare_distance = total_distance/2;
|
||||
}
|
||||
|
||||
// project a point 500 meters past the landing point, passing
|
||||
// through the landing point
|
||||
const float land_projection = 500;
|
||||
int32_t land_bearing_cd = get_bearing_cd(prev_WP_loc, next_WP_loc);
|
||||
|
||||
// now calculate our aim point, which is before the landing
|
||||
// point and above it
|
||||
Location loc = next_WP_loc;
|
||||
location_update(loc, land_bearing_cd*0.01f, -flare_distance);
|
||||
loc.alt += aim_height*100;
|
||||
|
||||
// calculate point along that slope 500m ahead
|
||||
location_update(loc, land_bearing_cd*0.01f, land_projection);
|
||||
loc.alt -= slope * land_projection * 100;
|
||||
|
||||
// setup the offset_cm for set_target_altitude_proportion()
|
||||
target_altitude_offset_cm = loc.alt - prev_WP_loc.alt;
|
||||
|
||||
// calculate the proportion we are to the target
|
||||
float land_proportion = location_path_proportion(current_loc, prev_WP_loc, loc);
|
||||
|
||||
// now setup the glide slope for landing
|
||||
set_target_altitude_proportion_fn(loc, 1.0f - land_proportion);
|
||||
|
||||
// stay within the range of the start and end locations in altitude
|
||||
constrain_target_altitude_location_fn(loc, prev_WP_loc);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -28,6 +28,13 @@ class AP_Landing
|
||||
{
|
||||
public:
|
||||
|
||||
enum Landing_Type {
|
||||
TYPE_STANDARD_GLIDE_SLOPE = 0,
|
||||
// TODO: TYPE_DEEPSTALL,
|
||||
// TODO: TYPE_PARACHUTE,
|
||||
// TODO: TYPE_HELICAL,
|
||||
};
|
||||
|
||||
FUNCTOR_TYPEDEF(set_target_altitude_proportion_fn_t, void, const Location&, float);
|
||||
set_target_altitude_proportion_fn_t set_target_altitude_proportion_fn;
|
||||
|
||||
@ -140,4 +147,17 @@ private:
|
||||
AP_Int8 abort_throttle_enable;
|
||||
AP_Int8 flap_percent;
|
||||
AP_Int8 throttle_slewrate;
|
||||
AP_Int8 type;
|
||||
|
||||
|
||||
|
||||
// Land Type STANDARD GLIDE SLOPE
|
||||
bool type_slope_verify_land(const AP_SpdHgtControl::FlightStage flight_stage, const Location &prev_WP_loc, Location &next_WP_loc, const Location ¤t_loc,
|
||||
const int32_t auto_state_takeoff_altitude_rel_cm, const float height, const float sink_rate, const float wp_proportion, const uint32_t last_flying_ms, const bool is_armed, const bool is_flying, const bool rangefinder_state_in_range, bool &throttle_suppressed);
|
||||
|
||||
void type_slope_adjust_landing_slope_for_rangefinder_bump(AP_Vehicle::FixedWing::Rangefinder_State &rangefinder_state, Location &prev_WP_loc, Location &next_WP_loc, const Location ¤t_loc, const float wp_distance, int32_t &target_altitude_offset_cm);
|
||||
|
||||
void type_slope_setup_landing_glide_slope(const Location &prev_WP_loc, const Location &next_WP_loc, const Location ¤t_loc, int32_t &target_altitude_offset_cm);
|
||||
void type_slope_check_if_need_to_abort(const AP_Vehicle::FixedWing::Rangefinder_State &rangefinder_state);
|
||||
|
||||
};
|
||||
|
295
libraries/AP_Landing/AP_Landing_Slope.cpp
Normal file
295
libraries/AP_Landing/AP_Landing_Slope.cpp
Normal file
@ -0,0 +1,295 @@
|
||||
/*
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/*
|
||||
* AP_Landing_Slope.cpp - Landing logic handler for ArduPlane for STANDARD_GLIDE_SLOPE
|
||||
*/
|
||||
|
||||
#include "AP_Landing.h"
|
||||
#include <GCS_MAVLink/GCS.h>
|
||||
#include <AP_HAL/AP_HAL.h>
|
||||
|
||||
|
||||
/*
|
||||
update navigation for landing. Called when on landing approach or
|
||||
final flare
|
||||
*/
|
||||
bool AP_Landing::type_slope_verify_land(const AP_SpdHgtControl::FlightStage flight_stage, const Location &prev_WP_loc, Location &next_WP_loc, const Location ¤t_loc,
|
||||
const int32_t auto_state_takeoff_altitude_rel_cm, const float height, const float sink_rate, const float wp_proportion, const uint32_t last_flying_ms, const bool is_armed, const bool is_flying, const bool rangefinder_state_in_range, bool &throttle_suppressed)
|
||||
{
|
||||
// we don't 'verify' landing in the sense that it never completes,
|
||||
// so we don't verify command completion. Instead we use this to
|
||||
// adjust final landing parameters
|
||||
|
||||
// when aborting a landing, mimic the verify_takeoff with steering hold. Once
|
||||
// the altitude has been reached, restart the landing sequence
|
||||
if (flight_stage == AP_SpdHgtControl::FLIGHT_LAND_ABORT) {
|
||||
|
||||
throttle_suppressed = false;
|
||||
|
||||
|
||||
complete = false;
|
||||
pre_flare = false;
|
||||
nav_controller->update_heading_hold(get_bearing_cd(prev_WP_loc, next_WP_loc));
|
||||
|
||||
// see if we have reached abort altitude
|
||||
if (adjusted_relative_altitude_cm_fn() > auto_state_takeoff_altitude_rel_cm) {
|
||||
next_WP_loc = current_loc;
|
||||
mission.stop();
|
||||
if (restart_landing_sequence()) {
|
||||
mission.resume();
|
||||
}
|
||||
// else we're in AUTO with a stopped mission and handle_auto_mode() will set RTL
|
||||
}
|
||||
// make sure to return false so it leaves the mission index alone
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
/* Set land_complete (which starts the flare) under 3 conditions:
|
||||
1) we are within LAND_FLARE_ALT meters of the landing altitude
|
||||
2) we are within LAND_FLARE_SEC of the landing point vertically
|
||||
by the calculated sink rate (if LAND_FLARE_SEC != 0)
|
||||
3) we have gone past the landing point and don't have
|
||||
rangefinder data (to prevent us keeping throttle on
|
||||
after landing if we've had positive baro drift)
|
||||
*/
|
||||
|
||||
// flare check:
|
||||
// 1) below flare alt/sec requires approach stage check because if sec/alt are set too
|
||||
// large, and we're on a hard turn to line up for approach, we'll prematurely flare by
|
||||
// skipping approach phase and the extreme roll limits will make it hard to line up with runway
|
||||
// 2) passed land point and don't have an accurate AGL
|
||||
// 3) probably crashed (ensures motor gets turned off)
|
||||
|
||||
bool on_approach_stage = (flight_stage == AP_SpdHgtControl::FLIGHT_LAND_APPROACH ||
|
||||
flight_stage == AP_SpdHgtControl::FLIGHT_LAND_PREFLARE);
|
||||
bool below_flare_alt = (height <= flare_alt);
|
||||
bool below_flare_sec = (flare_sec > 0 && height <= sink_rate * flare_sec);
|
||||
bool probably_crashed = (aparm.crash_detection_enable && fabsf(sink_rate) < 0.2f && !is_flying);
|
||||
|
||||
if ((on_approach_stage && below_flare_alt) ||
|
||||
(on_approach_stage && below_flare_sec && (wp_proportion > 0.5)) ||
|
||||
(!rangefinder_state_in_range && wp_proportion >= 1) ||
|
||||
probably_crashed) {
|
||||
|
||||
if (!complete) {
|
||||
post_stats = true;
|
||||
if (is_flying && (AP_HAL::millis()-last_flying_ms) > 3000) {
|
||||
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_CRITICAL, "Flare crash detected: speed=%.1f", (double)ahrs.get_gps().ground_speed());
|
||||
} else {
|
||||
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "Flare %.1fm sink=%.2f speed=%.1f dist=%.1f",
|
||||
(double)height, (double)sink_rate,
|
||||
(double)ahrs.get_gps().ground_speed(),
|
||||
(double)get_distance(current_loc, next_WP_loc));
|
||||
}
|
||||
complete = true;
|
||||
update_flight_stage_fn();
|
||||
}
|
||||
|
||||
|
||||
if (ahrs.get_gps().ground_speed() < 3) {
|
||||
// reload any airspeed or groundspeed parameters that may have
|
||||
// been set for landing. We don't do this till ground
|
||||
// speed drops below 3.0 m/s as otherwise we will change
|
||||
// target speeds too early.
|
||||
aparm.airspeed_cruise_cm.load();
|
||||
aparm.min_gndspeed_cm.load();
|
||||
aparm.throttle_cruise.load();
|
||||
}
|
||||
} else if (!complete && !pre_flare && pre_flare_airspeed > 0) {
|
||||
bool reached_pre_flare_alt = pre_flare_alt > 0 && (height <= pre_flare_alt);
|
||||
bool reached_pre_flare_sec = pre_flare_sec > 0 && (height <= sink_rate * pre_flare_sec);
|
||||
if (reached_pre_flare_alt || reached_pre_flare_sec) {
|
||||
pre_flare = true;
|
||||
update_flight_stage_fn();
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
when landing we keep the L1 navigation waypoint 200m ahead. This
|
||||
prevents sudden turns if we overshoot the landing point
|
||||
*/
|
||||
struct Location land_WP_loc = next_WP_loc;
|
||||
int32_t land_bearing_cd = get_bearing_cd(prev_WP_loc, next_WP_loc);
|
||||
location_update(land_WP_loc,
|
||||
land_bearing_cd*0.01f,
|
||||
get_distance(prev_WP_loc, current_loc) + 200);
|
||||
nav_controller->update_waypoint(prev_WP_loc, land_WP_loc);
|
||||
|
||||
// once landed and stationary, post some statistics
|
||||
// this is done before disarm_if_autoland_complete() so that it happens on the next loop after the disarm
|
||||
if (post_stats && !is_armed) {
|
||||
post_stats = false;
|
||||
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "Distance from LAND point=%.2fm", (double)get_distance(current_loc, next_WP_loc));
|
||||
}
|
||||
|
||||
// check if we should auto-disarm after a confirmed landing
|
||||
disarm_if_autoland_complete_fn();
|
||||
|
||||
/*
|
||||
we return false as a landing mission item never completes
|
||||
|
||||
we stay on this waypoint unless the GCS commands us to change
|
||||
mission item, reset the mission, command a go-around or finish
|
||||
a land_abort procedure.
|
||||
*/
|
||||
return false;
|
||||
}
|
||||
|
||||
void AP_Landing::type_slope_adjust_landing_slope_for_rangefinder_bump(AP_Vehicle::FixedWing::Rangefinder_State &rangefinder_state, Location &prev_WP_loc, Location &next_WP_loc, const Location ¤t_loc, const float wp_distance, int32_t &target_altitude_offset_cm)
|
||||
{
|
||||
// check the rangefinder correction for a large change. When found, recalculate the glide slope. This is done by
|
||||
// determining the slope from your current location to the land point then following that back up to the approach
|
||||
// altitude and moving the prev_wp to that location. From there
|
||||
float correction_delta = fabsf(rangefinder_state.last_stable_correction) - fabsf(rangefinder_state.correction);
|
||||
|
||||
if (slope_recalc_shallow_threshold <= 0 ||
|
||||
fabsf(correction_delta) < slope_recalc_shallow_threshold) {
|
||||
return;
|
||||
}
|
||||
|
||||
rangefinder_state.last_stable_correction = rangefinder_state.correction;
|
||||
|
||||
float corrected_alt_m = (adjusted_altitude_cm_fn() - next_WP_loc.alt)*0.01f - rangefinder_state.correction;
|
||||
float total_distance_m = get_distance(prev_WP_loc, next_WP_loc);
|
||||
float top_of_glide_slope_alt_m = total_distance_m * corrected_alt_m / wp_distance;
|
||||
prev_WP_loc.alt = top_of_glide_slope_alt_m*100 + next_WP_loc.alt;
|
||||
|
||||
// re-calculate auto_state.land_slope with updated prev_WP_loc
|
||||
setup_landing_glide_slope(prev_WP_loc, next_WP_loc, current_loc, target_altitude_offset_cm);
|
||||
|
||||
if (rangefinder_state.correction >= 0) { // we're too low or object is below us
|
||||
// correction positive means we're too low so we should continue on with
|
||||
// the newly computed shallower slope instead of pitching/throttling up
|
||||
|
||||
} else if (slope_recalc_steep_threshold_to_abort > 0 && !has_aborted_due_to_slope_recalc) {
|
||||
// correction negative means we're too high and need to point down (and speed up) to re-align
|
||||
// to land on target. A large negative correction means we would have to dive down a lot and will
|
||||
// generating way too much speed that we can not bleed off in time. It is better to remember
|
||||
// the large baro altitude offset and abort the landing to come around again with the correct altitude
|
||||
// offset and "perfect" slope.
|
||||
|
||||
// calculate projected slope with projected alt
|
||||
float new_slope_deg = degrees(atan(slope));
|
||||
float initial_slope_deg = degrees(atan(initial_slope));
|
||||
|
||||
// is projected slope too steep?
|
||||
if (new_slope_deg - initial_slope_deg > slope_recalc_steep_threshold_to_abort) {
|
||||
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "Steep landing slope (%.0fm %.1fdeg)",
|
||||
(double)rangefinder_state.correction, (double)(new_slope_deg - initial_slope_deg));
|
||||
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "aborting landing!");
|
||||
alt_offset = rangefinder_state.correction;
|
||||
commanded_go_around = true;
|
||||
has_aborted_due_to_slope_recalc = true; // only allow this once.
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
a special glide slope calculation for the landing approach
|
||||
|
||||
During the land approach use a linear glide slope to a point
|
||||
projected through the landing point. We don't use the landing point
|
||||
itself as that leads to discontinuities close to the landing point,
|
||||
which can lead to erratic pitch control
|
||||
*/
|
||||
|
||||
void AP_Landing::type_slope_setup_landing_glide_slope(const Location &prev_WP_loc, const Location &next_WP_loc, const Location ¤t_loc, int32_t &target_altitude_offset_cm)
|
||||
{
|
||||
float total_distance = get_distance(prev_WP_loc, next_WP_loc);
|
||||
|
||||
// If someone mistakenly puts all 0's in their LAND command then total_distance
|
||||
// will be calculated as 0 and cause a divide by 0 error below. Lets avoid that.
|
||||
if (total_distance < 1) {
|
||||
total_distance = 1;
|
||||
}
|
||||
|
||||
// height we need to sink for this WP
|
||||
float sink_height = (prev_WP_loc.alt - next_WP_loc.alt)*0.01f;
|
||||
|
||||
// current ground speed
|
||||
float groundspeed = ahrs.groundspeed();
|
||||
if (groundspeed < 0.5f) {
|
||||
groundspeed = 0.5f;
|
||||
}
|
||||
|
||||
// calculate time to lose the needed altitude
|
||||
float sink_time = total_distance / groundspeed;
|
||||
if (sink_time < 0.5f) {
|
||||
sink_time = 0.5f;
|
||||
}
|
||||
|
||||
// find the sink rate needed for the target location
|
||||
float sink_rate = sink_height / sink_time;
|
||||
|
||||
// the height we aim for is the one to give us the right flare point
|
||||
float aim_height = flare_sec * sink_rate;
|
||||
if (aim_height <= 0) {
|
||||
aim_height = flare_alt;
|
||||
}
|
||||
|
||||
// don't allow the aim height to be too far above LAND_FLARE_ALT
|
||||
if (flare_alt > 0 && aim_height > flare_alt*2) {
|
||||
aim_height = flare_alt*2;
|
||||
}
|
||||
|
||||
// calculate slope to landing point
|
||||
bool is_first_calc = is_zero(slope);
|
||||
slope = (sink_height - aim_height) / total_distance;
|
||||
if (is_first_calc) {
|
||||
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "Landing glide slope %.1f degrees", (double)degrees(atanf(slope)));
|
||||
}
|
||||
|
||||
|
||||
// time before landing that we will flare
|
||||
float flare_time = aim_height / SpdHgt_Controller->get_land_sinkrate();
|
||||
|
||||
// distance to flare is based on ground speed, adjusted as we
|
||||
// get closer. This takes into account the wind
|
||||
float flare_distance = groundspeed * flare_time;
|
||||
|
||||
// don't allow the flare before half way along the final leg
|
||||
if (flare_distance > total_distance/2) {
|
||||
flare_distance = total_distance/2;
|
||||
}
|
||||
|
||||
// project a point 500 meters past the landing point, passing
|
||||
// through the landing point
|
||||
const float land_projection = 500;
|
||||
int32_t land_bearing_cd = get_bearing_cd(prev_WP_loc, next_WP_loc);
|
||||
|
||||
// now calculate our aim point, which is before the landing
|
||||
// point and above it
|
||||
Location loc = next_WP_loc;
|
||||
location_update(loc, land_bearing_cd*0.01f, -flare_distance);
|
||||
loc.alt += aim_height*100;
|
||||
|
||||
// calculate point along that slope 500m ahead
|
||||
location_update(loc, land_bearing_cd*0.01f, land_projection);
|
||||
loc.alt -= slope * land_projection * 100;
|
||||
|
||||
// setup the offset_cm for set_target_altitude_proportion()
|
||||
target_altitude_offset_cm = loc.alt - prev_WP_loc.alt;
|
||||
|
||||
// calculate the proportion we are to the target
|
||||
float land_proportion = location_path_proportion(current_loc, prev_WP_loc, loc);
|
||||
|
||||
// now setup the glide slope for landing
|
||||
set_target_altitude_proportion_fn(loc, 1.0f - land_proportion);
|
||||
|
||||
// stay within the range of the start and end locations in altitude
|
||||
constrain_target_altitude_location_fn(loc, prev_WP_loc);
|
||||
}
|
Loading…
Reference in New Issue
Block a user