mirror of https://github.com/ArduPilot/ardupilot
ArduCopter, AP_InertialNav: consolidated ThirdOrderComplementaryFilter into AP_InertialNav to save about 200bytes of RAM
This commit is contained in:
parent
a84d9110bd
commit
154e3c33f7
|
@ -951,7 +951,7 @@ get_throttle_rate(int16_t z_target_speed)
|
||||||
|
|
||||||
// calculate rate error
|
// calculate rate error
|
||||||
#if INERTIAL_NAV_Z == ENABLED
|
#if INERTIAL_NAV_Z == ENABLED
|
||||||
z_rate_error = z_target_speed - inertial_nav._velocity.z; // calc the speed error
|
z_rate_error = z_target_speed - inertial_nav.get_velocity_z(); // calc the speed error
|
||||||
#else
|
#else
|
||||||
z_rate_error = z_target_speed - climb_rate; // calc the speed error
|
z_rate_error = z_target_speed - climb_rate; // calc the speed error
|
||||||
#endif
|
#endif
|
||||||
|
@ -1071,7 +1071,7 @@ get_throttle_land()
|
||||||
|
|
||||||
// detect whether we have landed by watching for minimum throttle and now movement
|
// detect whether we have landed by watching for minimum throttle and now movement
|
||||||
#if INERTIAL_NAV_Z == ENABLED
|
#if INERTIAL_NAV_Z == ENABLED
|
||||||
if (abs(inertial_nav._velocity.z) < 20 && (g.rc_3.servo_out <= get_angle_boost(g.throttle_min) || g.pid_throttle_accel.get_integrator() <= -150)) {
|
if (abs(inertial_nav.get_velocity_z()) < 20 && (g.rc_3.servo_out <= get_angle_boost(g.throttle_min) || g.pid_throttle_accel.get_integrator() <= -150)) {
|
||||||
#else
|
#else
|
||||||
if (abs(climb_rate) < 20 && (g.rc_3.servo_out <= get_angle_boost(g.throttle_min) || g.pid_throttle_accel.get_integrator() <= -150)) {
|
if (abs(climb_rate) < 20 && (g.rc_3.servo_out <= get_angle_boost(g.throttle_min) || g.pid_throttle_accel.get_integrator() <= -150)) {
|
||||||
#endif
|
#endif
|
||||||
|
|
|
@ -786,32 +786,30 @@ static void Log_Read_Attitude()
|
||||||
(unsigned)temp7);
|
(unsigned)temp7);
|
||||||
}
|
}
|
||||||
|
|
||||||
// Write an INAV packet. Total length : 36 Bytes
|
// Write an INAV packet. Total length : 52 Bytes
|
||||||
static void Log_Write_INAV(float delta_t)
|
static void Log_Write_INAV(float delta_t)
|
||||||
{
|
{
|
||||||
#if INERTIAL_NAV_XY == ENABLED || INERTIAL_NAV_Z == ENABLED
|
#if INERTIAL_NAV_XY == ENABLED || INERTIAL_NAV_Z == ENABLED
|
||||||
|
Vector3f accel_corr = inertial_nav.accel_correction.get();
|
||||||
|
|
||||||
DataFlash.WriteByte(HEAD_BYTE1);
|
DataFlash.WriteByte(HEAD_BYTE1);
|
||||||
DataFlash.WriteByte(HEAD_BYTE2);
|
DataFlash.WriteByte(HEAD_BYTE2);
|
||||||
DataFlash.WriteByte(LOG_INAV_MSG);
|
DataFlash.WriteByte(LOG_INAV_MSG);
|
||||||
|
|
||||||
DataFlash.WriteInt((int16_t)baro_alt); // 1 barometer altitude
|
DataFlash.WriteInt((int16_t)baro_alt); // 1 barometer altitude
|
||||||
DataFlash.WriteInt((int16_t)inertial_nav._position.z); // 2 accel + baro filtered altitude
|
DataFlash.WriteInt((int16_t)inertial_nav.get_altitude()); // 2 accel + baro filtered altitude
|
||||||
DataFlash.WriteInt((int16_t)climb_rate_actual); // 3 barometer based climb rate
|
DataFlash.WriteInt((int16_t)climb_rate_actual); // 3 barometer based climb rate
|
||||||
DataFlash.WriteInt((int16_t)inertial_nav._velocity.z); // 4 accel + baro based climb rate
|
DataFlash.WriteInt((int16_t)inertial_nav.get_velocity_z()); // 4 accel + baro based climb rate
|
||||||
DataFlash.WriteLong(get_int(inertial_nav._comp_filter._comp_k1o.x)); // 5 accel correction x-axis
|
DataFlash.WriteLong(get_int(accel_corr.x)); // 5 accel correction x-axis
|
||||||
DataFlash.WriteLong(get_int(inertial_nav._comp_filter._comp_k1o.y)); // 6 accel correction y-axis
|
DataFlash.WriteLong(get_int(accel_corr.y)); // 6 accel correction y-axis
|
||||||
DataFlash.WriteLong(get_int(inertial_nav._comp_filter._comp_k1o.z)); // 7 accel correction z-axis
|
DataFlash.WriteLong(get_int(accel_corr.z)); // 7 accel correction z-axis
|
||||||
DataFlash.WriteLong(get_int(inertial_nav._comp_filter.comp_k1o_ef.z));// 8 accel correction earth frame
|
DataFlash.WriteLong(get_int(inertial_nav.accel_correction_ef.z)); // 8 accel correction earth frame
|
||||||
DataFlash.WriteLong(get_int(inertial_nav._accel_ef.x)); // 9 accel earth frame x-axis
|
DataFlash.WriteLong(g_gps->latitude-home.lat); // 9 lat from home
|
||||||
DataFlash.WriteLong(get_int(inertial_nav._accel_ef.y)); // 10 accel earth frame y-axis
|
DataFlash.WriteLong(g_gps->longitude-home.lng); // 10 lon from home
|
||||||
DataFlash.WriteLong(get_int(inertial_nav._accel_ef.z)); // 11 accel earth frame z-axis
|
DataFlash.WriteLong(get_int(inertial_nav.get_latitude_diff())); // 11 accel based lat from home
|
||||||
DataFlash.WriteLong(get_int(delta_t)); // 12 time delta of samples
|
DataFlash.WriteLong(get_int(inertial_nav.get_longitude_diff())); // 12 accel based lon from home
|
||||||
DataFlash.WriteLong(g_gps->latitude-home.lat); // 13 lat from home
|
DataFlash.WriteLong(get_int(inertial_nav.get_latitude_velocity())); // 13 accel based lat velocity
|
||||||
DataFlash.WriteLong(g_gps->longitude-home.lng); // 14 lon from home
|
DataFlash.WriteLong(get_int(inertial_nav.get_longitude_velocity())); // 14 accel based lon velocity
|
||||||
DataFlash.WriteLong(get_int(inertial_nav.get_latitude_diff())); // 15 accel based lat from home
|
|
||||||
DataFlash.WriteLong(get_int(inertial_nav.get_longitude_diff())); // 16 accel based lon from home
|
|
||||||
DataFlash.WriteLong(get_int(inertial_nav.get_latitude_velocity())); // 17 accel based lat velocity
|
|
||||||
DataFlash.WriteLong(get_int(inertial_nav.get_longitude_velocity())); // 18 accel based lon velocity
|
|
||||||
|
|
||||||
DataFlash.WriteByte(END_BYTE);
|
DataFlash.WriteByte(END_BYTE);
|
||||||
#endif
|
#endif
|
||||||
|
@ -828,18 +826,14 @@ static void Log_Read_INAV()
|
||||||
float temp6 = get_float(DataFlash.ReadLong()); // 6 accel correction y-axis
|
float temp6 = get_float(DataFlash.ReadLong()); // 6 accel correction y-axis
|
||||||
float temp7 = get_float(DataFlash.ReadLong()); // 7 accel correction z-axis
|
float temp7 = get_float(DataFlash.ReadLong()); // 7 accel correction z-axis
|
||||||
float temp8 = get_float(DataFlash.ReadLong()); // 8 accel correction earth frame
|
float temp8 = get_float(DataFlash.ReadLong()); // 8 accel correction earth frame
|
||||||
float temp9 = get_float(DataFlash.ReadLong()); // 9 accel earth frame x-axis
|
int32_t temp9 = DataFlash.ReadLong(); // 9 lat from home
|
||||||
float temp10 = get_float(DataFlash.ReadLong()); // 10 accel earth frame y-axis
|
int32_t temp10 = DataFlash.ReadLong(); // 10 lon from home
|
||||||
float temp11 = get_float(DataFlash.ReadLong()); // 11 accel earth frame z-axis
|
float temp11 = get_float(DataFlash.ReadLong()); // 11 accel based lat from home
|
||||||
float temp12 = get_float(DataFlash.ReadLong()); // 12 time delta of samples
|
float temp12 = get_float(DataFlash.ReadLong()); // 12 accel based lon from home
|
||||||
int32_t temp13 = DataFlash.ReadLong(); // 13 lat from home
|
float temp13 = get_float(DataFlash.ReadLong()); // 13 accel based lat velocity
|
||||||
int32_t temp14 = DataFlash.ReadLong(); // 14 lon from home
|
float temp14 = get_float(DataFlash.ReadLong()); // 14 accel based lon velocity
|
||||||
float temp15 = get_float(DataFlash.ReadLong()); // 15 accel based lat from home
|
// 1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
||||||
float temp16 = get_float(DataFlash.ReadLong()); // 16 accel based lon from home
|
cliSerial->printf_P(PSTR("INAV, %d, %d, %d, %d, %6.4f, %6.4f, %6.4f, %6.4f, %ld, %ld, %6.4f, %6.4f, %6.4f, %6.4f\n"),
|
||||||
float temp17 = get_float(DataFlash.ReadLong()); // 17 accel based lat velocity
|
|
||||||
float temp18 = get_float(DataFlash.ReadLong()); // 18 accel based lon velocity
|
|
||||||
// 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
|
|
||||||
cliSerial->printf_P(PSTR("INAV, %d, %d, %d, %d, %6.4f, %6.4f, %6.4f, %6.4f, %6.4f, %6.4f, %6.4f, %6.4f, %ld, %ld, %6.4f, %6.4f, %6.4f, %6.4f\n"),
|
|
||||||
(int)temp1,
|
(int)temp1,
|
||||||
(int)temp2,
|
(int)temp2,
|
||||||
(int)temp3,
|
(int)temp3,
|
||||||
|
@ -853,11 +847,7 @@ static void Log_Read_INAV()
|
||||||
temp11,
|
temp11,
|
||||||
temp12,
|
temp12,
|
||||||
temp13,
|
temp13,
|
||||||
temp14,
|
temp14);
|
||||||
temp15,
|
|
||||||
temp16,
|
|
||||||
temp17,
|
|
||||||
temp18);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// Write a mode packet. Total length : 7 bytes
|
// Write a mode packet. Total length : 7 bytes
|
||||||
|
|
|
@ -541,7 +541,7 @@ static int32_t get_altitude_error()
|
||||||
|
|
||||||
#if INERTIAL_NAV_Z == ENABLED
|
#if INERTIAL_NAV_Z == ENABLED
|
||||||
// use inertial nav for altitude error
|
// use inertial nav for altitude error
|
||||||
return next_WP.alt - inertial_nav._position.z;
|
return next_WP.alt - inertial_nav.get_altitude();
|
||||||
#else
|
#else
|
||||||
return next_WP.alt - current_loc.alt;
|
return next_WP.alt - current_loc.alt;
|
||||||
#endif
|
#endif
|
||||||
|
|
|
@ -10,24 +10,22 @@
|
||||||
|
|
||||||
// table of user settable parameters
|
// table of user settable parameters
|
||||||
const AP_Param::GroupInfo AP_InertialNav::var_info[] PROGMEM = {
|
const AP_Param::GroupInfo AP_InertialNav::var_info[] PROGMEM = {
|
||||||
// index 0 and 1 are for old parameters that are no longer used
|
|
||||||
|
|
||||||
// @Param: ACORR
|
// @Param: ACORR
|
||||||
// @DisplayName: Inertial Nav calculated accelerometer corrections
|
// @DisplayName: Inertial Nav calculated accelerometer corrections
|
||||||
// @Description: calculated accelerometer corrections
|
// @Description: calculated accelerometer corrections
|
||||||
// @Increment: 1
|
// @Increment: 1
|
||||||
AP_GROUPINFO("ACORR", 0, AP_InertialNav, _accel_correction, 0),
|
AP_GROUPINFO("ACORR", 0, AP_InertialNav, accel_correction, 0),
|
||||||
|
|
||||||
// @Param: TC_XY
|
// @Param: TC_XY
|
||||||
// @DisplayName: Horizontal Time Constant
|
// @DisplayName: Horizontal Time Constant
|
||||||
// @Description: Time constnat for GPS and accel mixing. Higher TC increases GPS impact on position
|
// @Description: Time constant for GPS and accel mixing. Higher TC decreases GPS impact on position estimate
|
||||||
// @Range: 0 10
|
// @Range: 0 10
|
||||||
// @Increment: 0.1
|
// @Increment: 0.1
|
||||||
AP_GROUPINFO("TC_XY", 1, AP_InertialNav, _time_constant_xy, AP_INTERTIALNAV_TC_XY),
|
AP_GROUPINFO("TC_XY", 1, AP_InertialNav, _time_constant_xy, AP_INTERTIALNAV_TC_XY),
|
||||||
|
|
||||||
// @Param: TC_Z
|
// @Param: TC_Z
|
||||||
// @DisplayName: Vertical Time Constant
|
// @DisplayName: Vertical Time Constant
|
||||||
// @Description: Time constnat for baro and accel mixing. Higher TC increases barometers impact on altitude
|
// @Description: Time constant for baro and accel mixing. Higher TC decreases barometers impact on altitude estimate
|
||||||
// @Range: 0 10
|
// @Range: 0 10
|
||||||
// @Increment: 0.1
|
// @Increment: 0.1
|
||||||
AP_GROUPINFO("TC_Z", 2, AP_InertialNav, _time_constant_z, AP_INTERTIALNAV_TC_Z),
|
AP_GROUPINFO("TC_Z", 2, AP_InertialNav, _time_constant_z, AP_INTERTIALNAV_TC_Z),
|
||||||
|
@ -35,95 +33,93 @@ const AP_Param::GroupInfo AP_InertialNav::var_info[] PROGMEM = {
|
||||||
AP_GROUPEND
|
AP_GROUPEND
|
||||||
};
|
};
|
||||||
|
|
||||||
|
// init - initialise library
|
||||||
|
void AP_InertialNav::init()
|
||||||
|
{
|
||||||
|
// recalculate the gains
|
||||||
|
update_gains();
|
||||||
|
}
|
||||||
|
|
||||||
// save_params - save all parameters to eeprom
|
// save_params - save all parameters to eeprom
|
||||||
void AP_InertialNav::save_params()
|
void AP_InertialNav::save_params()
|
||||||
{
|
{
|
||||||
Vector3f accel_corr = _comp_filter.get_1st_order_correction();
|
Vector3f accel_corr = accel_correction.get();
|
||||||
accel_corr.x = constrain(accel_corr.x,-200,200);
|
accel_corr.x = constrain(accel_corr.x,-100,100);
|
||||||
accel_corr.y = constrain(accel_corr.y,-200,200);
|
accel_corr.y = constrain(accel_corr.y,-100,100);
|
||||||
accel_corr.z = constrain(accel_corr.z,-200,200);
|
accel_corr.z = constrain(accel_corr.z,-100,100);
|
||||||
_accel_correction.set_and_save(accel_corr);
|
accel_correction.set_and_save(accel_corr);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// update - updates velocities and positions using latest info from ahrs, ins and barometer if new data is available;
|
||||||
|
void AP_InertialNav::update(float dt)
|
||||||
|
{
|
||||||
|
Vector3f acc_corr = accel_correction.get();
|
||||||
|
Vector3f accel_ef;
|
||||||
|
|
||||||
|
// discard samples where dt is too large
|
||||||
|
if( dt > 0.1 ) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
// check barometer
|
||||||
|
check_baro();
|
||||||
|
|
||||||
|
// check gps
|
||||||
|
check_gps();
|
||||||
|
|
||||||
|
// convert accelerometer readings to earth frame
|
||||||
|
Matrix3f dcm = _ahrs->get_dcm_matrix();
|
||||||
|
accel_ef = dcm * _ins->get_accel();
|
||||||
|
|
||||||
|
// remove influence of gravity
|
||||||
|
accel_ef.z += AP_INTERTIALNAV_GRAVITY;
|
||||||
|
accel_ef *= 100;
|
||||||
|
|
||||||
|
// remove xy if not enabled
|
||||||
|
if( !_xy_enabled ) {
|
||||||
|
accel_ef.x = 0;
|
||||||
|
accel_ef.y = 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
// get earth frame accelerometer correction
|
||||||
|
accel_correction_ef = dcm * acc_corr;
|
||||||
|
|
||||||
|
// calculate velocity by adding new acceleration from accelerometers
|
||||||
|
_velocity += (-accel_ef + accel_correction_ef) * dt;
|
||||||
|
|
||||||
|
// calculate new estimate of position
|
||||||
|
_position_base += _velocity * dt;
|
||||||
|
|
||||||
|
// store 3rd order estimate (i.e. estimated vertical position) for future use
|
||||||
|
_hist_position_estimate_z.add(_position_base.z);
|
||||||
|
|
||||||
|
// store 3rd order estimate (i.e. horizontal position) for future use at 10hz
|
||||||
|
_historic_xy_counter++;
|
||||||
|
if( _historic_xy_counter >= AP_INTERTIALNAV_SAVE_POS_AFTER_ITERATIONS ) {
|
||||||
|
_historic_xy_counter = 0;
|
||||||
|
_hist_position_estimate_x.add(_position_base.x);
|
||||||
|
_hist_position_estimate_y.add(_position_base.y);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
//
|
||||||
|
// XY Axis specific methods
|
||||||
|
//
|
||||||
|
|
||||||
// set time constant - set timeconstant used by complementary filter
|
// set time constant - set timeconstant used by complementary filter
|
||||||
void AP_InertialNav::set_time_constant_xy( float time_constant_in_seconds )
|
void AP_InertialNav::set_time_constant_xy( float time_constant_in_seconds )
|
||||||
{
|
{
|
||||||
// ensure it's a reasonable value
|
// ensure it's a reasonable value
|
||||||
if( time_constant_in_seconds > 0 && time_constant_in_seconds < 30 ) {
|
if( time_constant_in_seconds > 0 && time_constant_in_seconds < 30 ) {
|
||||||
_time_constant_xy = time_constant_in_seconds;
|
_time_constant_xy = time_constant_in_seconds;
|
||||||
_comp_filter.update_gains(_time_constant_xy, _time_constant_z);
|
update_gains();
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// set time constant - set timeconstant used by complementary filter
|
// position_ok - return true if position has been initialised and have received gps data within 3 seconds
|
||||||
void AP_InertialNav::set_time_constant_z( float time_constant_in_seconds )
|
bool AP_InertialNav::position_ok()
|
||||||
{
|
{
|
||||||
// ensure it's a reasonable value
|
return _xy_enabled && (millis() - _gps_last_update < 3000);
|
||||||
if( time_constant_in_seconds > 0 && time_constant_in_seconds < 30 ) {
|
|
||||||
_time_constant_z = time_constant_in_seconds;
|
|
||||||
_comp_filter.update_gains(_time_constant_xy, _time_constant_z);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// check_baro - check if new baro readings have arrived and use them to correct vertical accelerometer offsets
|
|
||||||
void AP_InertialNav::check_baro()
|
|
||||||
{
|
|
||||||
uint32_t baro_update_time;
|
|
||||||
|
|
||||||
if( _baro == NULL )
|
|
||||||
return;
|
|
||||||
|
|
||||||
// calculate time since last baro reading
|
|
||||||
baro_update_time = _baro->get_last_update();
|
|
||||||
if( baro_update_time != _baro_last_update ) {
|
|
||||||
float dt = (float)(baro_update_time - _baro_last_update) / 1000.0;
|
|
||||||
// call correction method
|
|
||||||
correct_with_baro(_baro->get_altitude()*100, dt);
|
|
||||||
_baro_last_update = baro_update_time;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
// correct_with_baro - modifies accelerometer offsets using barometer. dt is time since last baro reading
|
|
||||||
void AP_InertialNav::correct_with_baro(float baro_alt, float dt)
|
|
||||||
{
|
|
||||||
static uint8_t first_reads = 0;
|
|
||||||
|
|
||||||
// discard samples where dt is too large
|
|
||||||
if( dt > 0.2 ) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
// discard first 10 reads but perform some initialisation
|
|
||||||
if( first_reads <= 10 ) {
|
|
||||||
_comp_filter.set_3rd_order_z(baro_alt);
|
|
||||||
//_comp_filter.set_2nd_order_z(climb_rate);
|
|
||||||
first_reads++;
|
|
||||||
}
|
|
||||||
|
|
||||||
// get dcm matrix
|
|
||||||
Matrix3f dcm = _ahrs->get_dcm_matrix();
|
|
||||||
|
|
||||||
// provide baro alt to filter
|
|
||||||
_comp_filter.correct_3rd_order_z(baro_alt, dcm, dt);
|
|
||||||
}
|
|
||||||
|
|
||||||
// set_current_position - all internal calculations are recorded as the distances from this point
|
|
||||||
void AP_InertialNav::set_current_position(int32_t lon, int32_t lat)
|
|
||||||
{
|
|
||||||
// set base location
|
|
||||||
_base_lon = lon;
|
|
||||||
_base_lat = lat;
|
|
||||||
|
|
||||||
// set longitude->meters scaling
|
|
||||||
// this is used to offset the shrinking longitude as we go towards the poles
|
|
||||||
_lon_to_m_scaling = cos((fabs((float)lat)/10000000.0) * 0.0174532925);
|
|
||||||
|
|
||||||
// set estimated position to this position
|
|
||||||
_comp_filter.set_3rd_order_xy(0,0);
|
|
||||||
|
|
||||||
// set xy as enabled
|
|
||||||
_xy_enabled = true;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// check_gps - check if new gps readings have arrived and use them to correct position estimates
|
// check_gps - check if new gps readings have arrived and use them to correct position estimates
|
||||||
|
@ -158,13 +154,14 @@ void AP_InertialNav::check_gps()
|
||||||
void AP_InertialNav::correct_with_gps(int32_t lon, int32_t lat, float dt)
|
void AP_InertialNav::correct_with_gps(int32_t lon, int32_t lat, float dt)
|
||||||
{
|
{
|
||||||
float x,y;
|
float x,y;
|
||||||
|
float hist_position_base_x, hist_position_base_y;
|
||||||
|
|
||||||
// discard samples where dt is too large
|
// discard samples where dt is too large
|
||||||
if( dt > 1.0 || dt == 0 || !_xy_enabled) {
|
if( dt > 1.0 || dt == 0 || !_xy_enabled) {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
// calculate distance from home
|
// calculate distance from base location
|
||||||
//x = (float)(lat - _base_lat) * 1.113195;
|
//x = (float)(lat - _base_lat) * 1.113195;
|
||||||
//y = (float)(lon - _base_lon) * _lon_to_m_scaling * 1.113195;
|
//y = (float)(lon - _base_lon) * _lon_to_m_scaling * 1.113195;
|
||||||
x = (float)(lat - _base_lat);
|
x = (float)(lat - _base_lat);
|
||||||
|
@ -173,57 +170,35 @@ void AP_InertialNav::correct_with_gps(int32_t lon, int32_t lat, float dt)
|
||||||
// convert accelerometer readings to earth frame
|
// convert accelerometer readings to earth frame
|
||||||
Matrix3f dcm = _ahrs->get_dcm_matrix();
|
Matrix3f dcm = _ahrs->get_dcm_matrix();
|
||||||
|
|
||||||
// call comp filter's correct xy
|
// correct accelerometer offsets using gps
|
||||||
_comp_filter.correct_3rd_order_xy(-x, -y, dcm, dt);
|
|
||||||
//Notes: with +x above, accel lat comes out reversed
|
// ublox gps positions are delayed by 400ms
|
||||||
|
// we store historical position at 10hz so 4 iterations ago
|
||||||
|
if( _hist_position_estimate_x.num_items() >= AP_INTERTIALNAV_GPS_LAG_IN_10HZ_INCREMENTS ) {
|
||||||
|
hist_position_base_x = _hist_position_estimate_x.peek(AP_INTERTIALNAV_GPS_LAG_IN_10HZ_INCREMENTS-1);
|
||||||
|
hist_position_base_y = _hist_position_estimate_y.peek(AP_INTERTIALNAV_GPS_LAG_IN_10HZ_INCREMENTS-1);
|
||||||
|
}else{
|
||||||
|
hist_position_base_x = _position_base.x;
|
||||||
|
hist_position_base_y = _position_base.y;
|
||||||
}
|
}
|
||||||
|
|
||||||
// update - updates velocities and positions using latest info from ahrs, ins and barometer if new data is available;
|
// calculate error in position from gps with our historical estimate
|
||||||
void AP_InertialNav::update(float dt)
|
// To-Do: check why x and y are reversed
|
||||||
{
|
float err_x = -x - (hist_position_base_x + _position_correction.x);
|
||||||
// discard samples where dt is too large
|
float err_y = -y - (hist_position_base_y + _position_correction.y);
|
||||||
if( dt > 0.1 ) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
// check barometer
|
// calculate correction to accelerometers and apply in the body frame
|
||||||
check_baro();
|
Vector3f accel_corr = accel_correction.get();
|
||||||
|
accel_corr += dcm.mul_transpose(Vector3f((err_x*_k3_xy)*dt,(err_y*_k3_xy)*dt,0));
|
||||||
|
accel_correction.set(accel_corr);
|
||||||
|
|
||||||
// check gps
|
// correct velocity
|
||||||
check_gps();
|
_velocity.x += (err_x*_k2_xy) * dt;
|
||||||
|
_velocity.y += (err_y*_k2_xy) * dt;
|
||||||
|
|
||||||
// read acclerometer values
|
// correct position
|
||||||
_accel_bf = _ins->get_accel();
|
_position_correction.x += err_x*_k1_xy * dt;
|
||||||
|
_position_correction.y += err_y*_k1_xy * dt;
|
||||||
// convert accelerometer readings to earth frame
|
|
||||||
Matrix3f dcm = _ahrs->get_dcm_matrix();
|
|
||||||
_accel_ef = dcm * _accel_bf;
|
|
||||||
|
|
||||||
// remove influence of gravity
|
|
||||||
_accel_ef.z += AP_INTERTIALNAV_GRAVITY;
|
|
||||||
_accel_ef *= 100;
|
|
||||||
|
|
||||||
// remove xy if not enabled
|
|
||||||
if( !_xy_enabled ) {
|
|
||||||
_accel_ef.x = 0;
|
|
||||||
_accel_ef.y = 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
// provide accelerometer values to filter
|
|
||||||
_comp_filter.add_1st_order_sample(_accel_ef);
|
|
||||||
|
|
||||||
// recalculate estimates
|
|
||||||
_comp_filter.calculate(dt, dcm);
|
|
||||||
|
|
||||||
// get position and velocity estimates
|
|
||||||
_position = _comp_filter.get_3rd_order_estimate();
|
|
||||||
_velocity = _comp_filter.get_2nd_order_estimate();
|
|
||||||
}
|
|
||||||
|
|
||||||
// position_ok - return true if position has been initialised and have received gps data within 3 seconds
|
|
||||||
bool AP_InertialNav::position_ok()
|
|
||||||
{
|
|
||||||
return _xy_enabled && (millis() - _gps_last_update < 3000);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// get accel based latitude
|
// get accel based latitude
|
||||||
|
@ -235,7 +210,7 @@ int32_t AP_InertialNav::get_latitude()
|
||||||
}
|
}
|
||||||
|
|
||||||
//return _base_lat - (int32_t)(_position.x / 1.113195);
|
//return _base_lat - (int32_t)(_position.x / 1.113195);
|
||||||
return _base_lat - (int32_t)_position.x;
|
return _base_lat - (int32_t)(_position_base.x + _position_correction.x);
|
||||||
}
|
}
|
||||||
|
|
||||||
// get accel based longitude
|
// get accel based longitude
|
||||||
|
@ -247,7 +222,32 @@ int32_t AP_InertialNav::get_longitude()
|
||||||
}
|
}
|
||||||
|
|
||||||
//return _base_lon - (int32_t)(_position.y / (_lon_to_m_scaling * 1.113195) );
|
//return _base_lon - (int32_t)(_position.y / (_lon_to_m_scaling * 1.113195) );
|
||||||
return _base_lon - (int32_t)(_position.y / _lon_to_m_scaling );
|
return _base_lon - (int32_t)((_position_base.y+_position_correction.y) / _lon_to_m_scaling );
|
||||||
|
}
|
||||||
|
|
||||||
|
// set_current_position - all internal calculations are recorded as the distances from this point
|
||||||
|
void AP_InertialNav::set_current_position(int32_t lon, int32_t lat)
|
||||||
|
{
|
||||||
|
// set base location
|
||||||
|
_base_lon = lon;
|
||||||
|
_base_lat = lat;
|
||||||
|
|
||||||
|
// set longitude->meters scaling
|
||||||
|
// this is used to offset the shrinking longitude as we go towards the poles
|
||||||
|
_lon_to_m_scaling = cos((fabs((float)lat)/10000000.0) * 0.0174532925);
|
||||||
|
|
||||||
|
// reset corrections to base position to zero
|
||||||
|
_position_base.x = 0;
|
||||||
|
_position_base.y = 0;
|
||||||
|
_position_correction.x = 0;
|
||||||
|
_position_correction.y = 0;
|
||||||
|
|
||||||
|
// clear historic estimates
|
||||||
|
_hist_position_estimate_x.clear();
|
||||||
|
_hist_position_estimate_y.clear();
|
||||||
|
|
||||||
|
// set xy as enabled
|
||||||
|
_xy_enabled = true;
|
||||||
}
|
}
|
||||||
|
|
||||||
// get accel based latitude
|
// get accel based latitude
|
||||||
|
@ -260,7 +260,7 @@ float AP_InertialNav::get_latitude_diff()
|
||||||
|
|
||||||
//return _base_lat + (int32_t)_position.x;
|
//return _base_lat + (int32_t)_position.x;
|
||||||
//return -_position.x / 1.113195;
|
//return -_position.x / 1.113195;
|
||||||
return -_position.x;
|
return -(_position_base.x+_position_correction.x);
|
||||||
}
|
}
|
||||||
|
|
||||||
// get accel based longitude
|
// get accel based longitude
|
||||||
|
@ -273,7 +273,7 @@ float AP_InertialNav::get_longitude_diff()
|
||||||
|
|
||||||
//return _base_lon - (int32_t)(_position.x / _lon_to_m_scaling);
|
//return _base_lon - (int32_t)(_position.x / _lon_to_m_scaling);
|
||||||
//return -_position.y / (_lon_to_m_scaling * 1.113195);
|
//return -_position.y / (_lon_to_m_scaling * 1.113195);
|
||||||
return -_position.y / _lon_to_m_scaling;
|
return -(_position_base.y+_position_correction.y) / _lon_to_m_scaling;
|
||||||
}
|
}
|
||||||
|
|
||||||
// get velocity in latitude & longitude directions
|
// get velocity in latitude & longitude directions
|
||||||
|
@ -297,3 +297,125 @@ float AP_InertialNav::get_longitude_velocity()
|
||||||
|
|
||||||
return -_velocity.y;
|
return -_velocity.y;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// set_velocity_xy - set velocity in latitude & longitude directions (in cm/s)
|
||||||
|
void AP_InertialNav::set_velocity_xy(float x, float y)
|
||||||
|
{
|
||||||
|
_velocity.x = x;
|
||||||
|
_velocity.y = y;
|
||||||
|
}
|
||||||
|
|
||||||
|
//
|
||||||
|
// Z Axis methods
|
||||||
|
//
|
||||||
|
|
||||||
|
// set time constant - set timeconstant used by complementary filter
|
||||||
|
void AP_InertialNav::set_time_constant_z( float time_constant_in_seconds )
|
||||||
|
{
|
||||||
|
// ensure it's a reasonable value
|
||||||
|
if( time_constant_in_seconds > 0 && time_constant_in_seconds < 30 ) {
|
||||||
|
_time_constant_z = time_constant_in_seconds;
|
||||||
|
update_gains();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// check_baro - check if new baro readings have arrived and use them to correct vertical accelerometer offsets
|
||||||
|
void AP_InertialNav::check_baro()
|
||||||
|
{
|
||||||
|
uint32_t baro_update_time;
|
||||||
|
|
||||||
|
if( _baro == NULL )
|
||||||
|
return;
|
||||||
|
|
||||||
|
// calculate time since last baro reading
|
||||||
|
baro_update_time = _baro->get_last_update();
|
||||||
|
if( baro_update_time != _baro_last_update ) {
|
||||||
|
float dt = (float)(baro_update_time - _baro_last_update) / 1000.0;
|
||||||
|
// call correction method
|
||||||
|
correct_with_baro(_baro->get_altitude()*100, dt);
|
||||||
|
_baro_last_update = baro_update_time;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
// correct_with_baro - modifies accelerometer offsets using barometer. dt is time since last baro reading
|
||||||
|
void AP_InertialNav::correct_with_baro(float baro_alt, float dt)
|
||||||
|
{
|
||||||
|
static uint8_t first_reads = 0;
|
||||||
|
float hist_position_base_z;
|
||||||
|
|
||||||
|
// discard samples where dt is too large
|
||||||
|
if( dt > 0.2 ) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
// discard first 10 reads but perform some initialisation
|
||||||
|
if( first_reads <= 10 ) {
|
||||||
|
set_altitude(baro_alt);
|
||||||
|
first_reads++;
|
||||||
|
}
|
||||||
|
|
||||||
|
// get dcm matrix
|
||||||
|
Matrix3f dcm = _ahrs->get_dcm_matrix();
|
||||||
|
|
||||||
|
// 3rd order samples (i.e. position from baro) are delayed by 150ms (15 iterations at 100hz)
|
||||||
|
// so we should calculate error using historical estimates
|
||||||
|
if( _hist_position_estimate_z.num_items() >= 15 ) {
|
||||||
|
hist_position_base_z = _hist_position_estimate_z.peek(14);
|
||||||
|
}else{
|
||||||
|
hist_position_base_z = _position_base.z;
|
||||||
|
}
|
||||||
|
|
||||||
|
// calculate error in position from baro with our estimate
|
||||||
|
float err = baro_alt - (hist_position_base_z + _position_correction.z);
|
||||||
|
|
||||||
|
// calculate correction to accelerometers and apply in the body frame
|
||||||
|
Vector3f accel_corr = accel_correction.get();
|
||||||
|
accel_corr += dcm.mul_transpose(Vector3f(0,0,(err*_k3_z) * dt));
|
||||||
|
accel_correction.set(accel_corr);
|
||||||
|
|
||||||
|
// correct velocity
|
||||||
|
_velocity.z += (err*_k2_z) * dt;
|
||||||
|
|
||||||
|
// correct position
|
||||||
|
_position_correction.z += err*_k1_z * dt;
|
||||||
|
}
|
||||||
|
|
||||||
|
// set_altitude - set base altitude estimate in cm
|
||||||
|
void AP_InertialNav::set_altitude( float new_altitude)
|
||||||
|
{
|
||||||
|
_position_base.z = new_altitude;
|
||||||
|
_position_correction.z = 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
//
|
||||||
|
// Private methods
|
||||||
|
//
|
||||||
|
|
||||||
|
// update_gains - update gains from time constant (given in seconds)
|
||||||
|
void AP_InertialNav::update_gains()
|
||||||
|
{
|
||||||
|
// X & Y axis time constant
|
||||||
|
if( _time_constant_xy == 0 ) {
|
||||||
|
_k1_xy = _k2_xy = _k3_xy = 0;
|
||||||
|
}else{
|
||||||
|
_k1_xy = 3 / _time_constant_xy;
|
||||||
|
_k2_xy = 3 / (_time_constant_xy*_time_constant_xy);
|
||||||
|
_k3_xy = 1 / (_time_constant_xy*_time_constant_xy*_time_constant_xy);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Z axis time constant
|
||||||
|
if( _time_constant_z == 0 ) {
|
||||||
|
_k1_z = _k2_z = _k3_z = 0;
|
||||||
|
}else{
|
||||||
|
_k1_z = 3 / _time_constant_z;
|
||||||
|
_k2_z = 3 / (_time_constant_z*_time_constant_z);
|
||||||
|
_k3_z = 1 / (_time_constant_z*_time_constant_z*_time_constant_z);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// set_velocity_z - get latest climb rate (in cm/s)
|
||||||
|
void AP_InertialNav::set_velocity_z(float z )
|
||||||
|
{
|
||||||
|
_velocity.z = z;
|
||||||
|
}
|
||||||
|
|
|
@ -6,12 +6,17 @@
|
||||||
#include <AP_AHRS.h>
|
#include <AP_AHRS.h>
|
||||||
#include <AP_InertialSensor.h> // ArduPilot Mega IMU Library
|
#include <AP_InertialSensor.h> // ArduPilot Mega IMU Library
|
||||||
#include <AP_Baro.h> // ArduPilot Mega Barometer Library
|
#include <AP_Baro.h> // ArduPilot Mega Barometer Library
|
||||||
#include <ThirdOrderCompFilter.h> // Complementary filter for combining barometer altitude with accelerometers
|
#include <AP_Buffer.h> // FIFO buffer library
|
||||||
|
|
||||||
#define AP_INTERTIALNAV_GRAVITY 9.80665
|
#define AP_INTERTIALNAV_GRAVITY 9.80665
|
||||||
#define AP_INTERTIALNAV_TC_XY 3.0 // default time constant for complementary filter's X & Y axis
|
#define AP_INTERTIALNAV_TC_XY 3.0 // default time constant for complementary filter's X & Y axis
|
||||||
#define AP_INTERTIALNAV_TC_Z 3.0 // default time constant for complementary filter's Z axis
|
#define AP_INTERTIALNAV_TC_Z 3.0 // default time constant for complementary filter's Z axis
|
||||||
|
|
||||||
|
// #defines to control how often historical accel based positions are saved
|
||||||
|
// so they can later be compared to laggy gps readings
|
||||||
|
#define AP_INTERTIALNAV_SAVE_POS_AFTER_ITERATIONS 10
|
||||||
|
#define AP_INTERTIALNAV_GPS_LAG_IN_10HZ_INCREMENTS 4 // must not be larger than size of _hist_position_estimate_x and _hist_position_estimate_y
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* AP_InertialNav is an attempt to use accelerometers to augment other sensors to improve altitud e position hold
|
* AP_InertialNav is an attempt to use accelerometers to augment other sensors to improve altitud e position hold
|
||||||
*/
|
*/
|
||||||
|
@ -25,35 +30,29 @@ public:
|
||||||
_ins(ins),
|
_ins(ins),
|
||||||
_baro(baro),
|
_baro(baro),
|
||||||
_gps_ptr(gps_ptr),
|
_gps_ptr(gps_ptr),
|
||||||
_baro_last_update(0),
|
|
||||||
_gps_last_update(0),
|
|
||||||
_xy_enabled(false),
|
_xy_enabled(false),
|
||||||
_comp_filter(AP_INTERTIALNAV_TC_XY, AP_INTERTIALNAV_TC_Z)
|
_gps_last_update(0),
|
||||||
|
_baro_last_update(0)
|
||||||
{}
|
{}
|
||||||
|
|
||||||
// Initialisation
|
// Initialisation
|
||||||
virtual void init() {
|
virtual void init();
|
||||||
set_time_constant_xy(_time_constant_xy);
|
|
||||||
set_time_constant_z(_time_constant_z);
|
|
||||||
}
|
|
||||||
|
|
||||||
// save_params - save all parameters to eeprom
|
// save_params - save all parameters to eeprom
|
||||||
virtual void save_params();
|
virtual void save_params();
|
||||||
|
|
||||||
|
// update - updates velocities and positions using latest info from accelerometers;
|
||||||
|
virtual void update(float dt);
|
||||||
|
|
||||||
|
//
|
||||||
|
// XY Axis specific methods
|
||||||
|
//
|
||||||
|
|
||||||
// set time constant - set timeconstant used by complementary filter
|
// set time constant - set timeconstant used by complementary filter
|
||||||
virtual void set_time_constant_xy( float time_constant_in_seconds );
|
virtual void set_time_constant_xy( float time_constant_in_seconds );
|
||||||
|
|
||||||
// set time constant - set timeconstant used by complementary filter
|
// altitude_ok, position_ok - true if inertial based altitude and position can be trusted
|
||||||
virtual void set_time_constant_z( float time_constant_in_seconds );
|
virtual bool position_ok();
|
||||||
|
|
||||||
// check_baro - check if new baro readings have arrived and use them to correct vertical accelerometer offsets
|
|
||||||
virtual void check_baro();
|
|
||||||
|
|
||||||
// correct_with_baro - modifies accelerometer offsets using barometer. dt is time since last baro reading
|
|
||||||
virtual void correct_with_baro(float baro_alt, float dt);
|
|
||||||
|
|
||||||
// set_current_position - all internal calculations are recorded as the distances from this point
|
|
||||||
virtual void set_current_position(int32_t lon, int32_t lat);
|
|
||||||
|
|
||||||
// check_gps - check if new gps readings have arrived and use them to correct position estimates
|
// check_gps - check if new gps readings have arrived and use them to correct position estimates
|
||||||
virtual void check_gps();
|
virtual void check_gps();
|
||||||
|
@ -61,61 +60,91 @@ public:
|
||||||
// correct_with_gps - modifies accelerometer offsets using gps. dt is time since last gps update
|
// correct_with_gps - modifies accelerometer offsets using gps. dt is time since last gps update
|
||||||
virtual void correct_with_gps(int32_t lon, int32_t lat, float dt);
|
virtual void correct_with_gps(int32_t lon, int32_t lat, float dt);
|
||||||
|
|
||||||
// update - updates velocities and positions using latest info from accelerometers;
|
|
||||||
virtual void update(float dt);
|
|
||||||
|
|
||||||
// altitude_ok, position_ok - true if inertial based altitude and position can be trusted
|
|
||||||
virtual bool altitude_ok() { return true; }
|
|
||||||
virtual bool position_ok();
|
|
||||||
|
|
||||||
// get_altitude - get latest altitude estimate in cm
|
|
||||||
virtual float get_altitude() { return _position.z; }
|
|
||||||
virtual void set_altitude( int32_t new_altitude) { _comp_filter.set_3rd_order_z(new_altitude); }
|
|
||||||
|
|
||||||
// get_velocity_z - get latest climb rate (in cm/s)
|
|
||||||
virtual float get_velocity_z() { return _velocity.z; }
|
|
||||||
virtual void set_velocity_z( int32_t new_velocity ) { _comp_filter.set_2nd_order_z(new_velocity); }
|
|
||||||
|
|
||||||
// get latitude & longitude positions
|
// get latitude & longitude positions
|
||||||
virtual int32_t get_latitude();
|
virtual int32_t get_latitude();
|
||||||
virtual int32_t get_longitude();
|
virtual int32_t get_longitude();
|
||||||
|
|
||||||
// get latitude & longitude positions from base location
|
// set_current_position - all internal calculations are recorded as the distances from this point
|
||||||
|
virtual void set_current_position(int32_t lon, int32_t lat);
|
||||||
|
|
||||||
|
// get latitude & longitude positions from base location (in cm)
|
||||||
virtual float get_latitude_diff();
|
virtual float get_latitude_diff();
|
||||||
virtual float get_longitude_diff();
|
virtual float get_longitude_diff();
|
||||||
|
|
||||||
// get velocity in latitude & longitude directions
|
// get velocity in latitude & longitude directions (in cm/s)
|
||||||
virtual float get_latitude_velocity();
|
virtual float get_latitude_velocity();
|
||||||
virtual float get_longitude_velocity();
|
virtual float get_longitude_velocity();
|
||||||
|
|
||||||
|
// set velocity in latitude & longitude directions (in cm/s)
|
||||||
|
virtual void set_velocity_xy(float x, float y);
|
||||||
|
|
||||||
|
//
|
||||||
|
// Z Axis methods
|
||||||
|
//
|
||||||
|
|
||||||
|
// set time constant - set timeconstant used by complementary filter
|
||||||
|
virtual void set_time_constant_z( float time_constant_in_seconds );
|
||||||
|
|
||||||
|
// altitude_ok, position_ok - true if inertial based altitude and position can be trusted
|
||||||
|
virtual bool altitude_ok() { return true; }
|
||||||
|
|
||||||
|
// check_baro - check if new baro readings have arrived and use them to correct vertical accelerometer offsets
|
||||||
|
virtual void check_baro();
|
||||||
|
|
||||||
|
// correct_with_baro - modifies accelerometer offsets using barometer. dt is time since last baro reading
|
||||||
|
virtual void correct_with_baro(float baro_alt, float dt);
|
||||||
|
|
||||||
|
// get_altitude - get latest altitude estimate in cm
|
||||||
|
virtual float get_altitude() { return _position_base.z + _position_correction.z; }
|
||||||
|
virtual void set_altitude( float new_altitude);
|
||||||
|
|
||||||
|
// get_velocity_z - get latest climb rate (in cm/s)
|
||||||
|
virtual float get_velocity_z() { return _velocity.z; }
|
||||||
|
virtual void set_velocity_z( float new_velocity );
|
||||||
|
|
||||||
// class level parameters
|
// class level parameters
|
||||||
static const struct AP_Param::GroupInfo var_info[];
|
static const struct AP_Param::GroupInfo var_info[];
|
||||||
|
|
||||||
//protected:
|
// public variables
|
||||||
AP_AHRS* _ahrs;
|
AP_Vector3f accel_correction; // acceleration corrections
|
||||||
AP_InertialSensor* _ins;
|
Vector3f accel_correction_ef; // earth frame accelerometer corrections. here for logging purposes only
|
||||||
AP_Baro* _baro;
|
|
||||||
GPS** _gps_ptr;
|
|
||||||
|
|
||||||
uint32_t _baro_last_update;
|
protected:
|
||||||
|
|
||||||
|
virtual void update_gains(); // update_gains - update gains from time constant (given in seconds)
|
||||||
|
|
||||||
|
AP_AHRS* _ahrs; // pointer to ahrs object
|
||||||
|
AP_InertialSensor* _ins; // pointer to inertial sensor
|
||||||
|
AP_Baro* _baro; // pointer to barometer
|
||||||
|
GPS** _gps_ptr; // pointer to pointer to gps
|
||||||
|
|
||||||
|
// XY Axis specific variables
|
||||||
|
bool _xy_enabled; // xy position estimates enabled
|
||||||
|
AP_Float _time_constant_xy; // time constant for horizontal corrections
|
||||||
|
float _k1_xy; // gain for horizontal position correction
|
||||||
|
float _k2_xy; // gain for horizontal velocity correction
|
||||||
|
float _k3_xy; // gain for horizontal accelerometer offset correction
|
||||||
uint32_t _gps_last_update; // system time of last gps update
|
uint32_t _gps_last_update; // system time of last gps update
|
||||||
uint32_t _gps_last_time; // time of last gps update according to the gps itself
|
uint32_t _gps_last_time; // time of last gps update according to the gps itself
|
||||||
|
uint8_t _historic_xy_counter; // counter used to slow saving of position estimates for later comparison to gps
|
||||||
bool _xy_enabled;
|
AP_BufferFloat_Size5 _hist_position_estimate_x; // buffer of historic accel based position to account for lag
|
||||||
|
AP_BufferFloat_Size5 _hist_position_estimate_y; // buffer of historic accel based position to account for lag
|
||||||
AP_Float _time_constant_xy; // time constant for complementary filter's horizontal corrections
|
|
||||||
AP_Float _time_constant_z; // time constant for complementary filter's vertical corrections
|
|
||||||
Vector3f _accel_bf; // latest accelerometer values
|
|
||||||
Vector3f _accel_ef; // accelerometer values converted from body to earth frame
|
|
||||||
AP_Vector3f _accel_correction; // accelerometer corrections calculated by complementary filter
|
|
||||||
Vector3f _velocity; // latest velocity estimate (integrated from accelerometer values)
|
|
||||||
Vector3f _position; // latest position estimate
|
|
||||||
int32_t _base_lat; // base latitude
|
int32_t _base_lat; // base latitude
|
||||||
int32_t _base_lon; // base longitude
|
int32_t _base_lon; // base longitude
|
||||||
float _lon_to_m_scaling; // conversion of longitude to meters
|
float _lon_to_m_scaling; // conversion of longitude to meters
|
||||||
|
|
||||||
ThirdOrderCompFilter _comp_filter; // 3rd order complementary filter for combining baro readings with accelerometers
|
// Z Axis specific variables
|
||||||
|
AP_Float _time_constant_z; // time constant for vertical corrections
|
||||||
|
float _k1_z; // gain for vertical position correction
|
||||||
|
float _k2_z; // gain for vertical velocity correction
|
||||||
|
float _k3_z; // gain for vertical accelerometer offset correction
|
||||||
|
uint32_t _baro_last_update; // time of last barometer update
|
||||||
|
AP_BufferFloat_Size15 _hist_position_estimate_z; // buffer of historic accel based altitudes to account for lag
|
||||||
|
|
||||||
|
// general variables
|
||||||
|
Vector3f _position_base; // position estimate
|
||||||
|
Vector3f _position_correction; // sum of correction to _comp_h from delayed 1st order samples
|
||||||
|
Vector3f _velocity; // latest velocity estimate (integrated from accelerometer values)
|
||||||
};
|
};
|
||||||
|
|
||||||
#endif // __AP_INERTIALNAV_H__
|
#endif // __AP_INERTIALNAV_H__
|
||||||
|
|
Loading…
Reference in New Issue