ArduPlane: convert floating point divides into multiplys

This commit is contained in:
Henry Wurzburg 2022-03-11 19:03:13 -06:00 committed by Andrew Tridgell
parent c48b7319bc
commit 14700063d2
5 changed files with 19 additions and 19 deletions

View File

@ -380,7 +380,7 @@ void Plane::update_fbwb_speed_height(void)
target_altitude.last_elev_check_us = now; target_altitude.last_elev_check_us = now;
float elevator_input = channel_pitch->get_control_in() / 4500.0f; float elevator_input = channel_pitch->get_control_in() * (1/4500.0);
if (g.flybywire_elev_reverse) { if (g.flybywire_elev_reverse) {
elevator_input = -elevator_input; elevator_input = -elevator_input;

View File

@ -1202,7 +1202,7 @@ float QuadPlane::get_pilot_input_yaw_rate_cds(void) const
// must have a non-zero max yaw rate for scaling to work // must have a non-zero max yaw rate for scaling to work
max_rate = (yaw_rate_max < 1.0f) ? 1 : yaw_rate_max; max_rate = (yaw_rate_max < 1.0f) ? 1 : yaw_rate_max;
} }
return plane.channel_rudder->get_control_in() * max_rate / 45; return plane.channel_rudder->get_control_in() * max_rate * (1/45.0);
} }
/* /*
@ -3206,7 +3206,7 @@ void QuadPlane::Log_Write_QControl_Tuning()
float des_alt_m = 0.0f; float des_alt_m = 0.0f;
int16_t target_climb_rate_cms = 0; int16_t target_climb_rate_cms = 0;
if (plane.control_mode != &plane.mode_qstabilize) { if (plane.control_mode != &plane.mode_qstabilize) {
des_alt_m = pos_control->get_pos_target_z_cm() / 100.0f; des_alt_m = pos_control->get_pos_target_z_cm() * 0.01f;
target_climb_rate_cms = pos_control->get_vel_target_z_cms(); target_climb_rate_cms = pos_control->get_vel_target_z_cms();
} }
@ -3391,7 +3391,7 @@ float QuadPlane::get_weathervane_yaw_rate_cds(void)
wp_nav->get_pitch(), wp_nav->get_pitch(),
is_takeoff, is_takeoff,
in_vtol_land_sequence())) { in_vtol_land_sequence())) {
return constrain_float(wv_output / 45, -100.0, 100.0) * yaw_rate_max * 0.5; return constrain_float(wv_output * (1/45.0), -100.0, 100.0) * yaw_rate_max * 0.5;
} }
return 0.0; return 0.0;

View File

@ -710,7 +710,7 @@ void Plane::set_landing_gear(void)
void Plane::servos_twin_engine_mix(void) void Plane::servos_twin_engine_mix(void)
{ {
float throttle = SRV_Channels::get_output_scaled(SRV_Channel::k_throttle); float throttle = SRV_Channels::get_output_scaled(SRV_Channel::k_throttle);
float rud_gain = float(plane.g2.rudd_dt_gain) / 100; float rud_gain = float(plane.g2.rudd_dt_gain) * 0.01f;
rudder_dt = rud_gain * SRV_Channels::get_output_scaled(SRV_Channel::k_rudder) / SERVO_MAX; rudder_dt = rud_gain * SRV_Channels::get_output_scaled(SRV_Channel::k_rudder) / SERVO_MAX;
#if ADVANCED_FAILSAFE == ENABLED #if ADVANCED_FAILSAFE == ENABLED

View File

@ -474,7 +474,7 @@ void Plane::update_dynamic_notch()
float rpm; float rpm;
if (rpm_sensor.get_rpm(0, rpm)) { if (rpm_sensor.get_rpm(0, rpm)) {
// set the harmonic notch filter frequency from the main rotor rpm // set the harmonic notch filter frequency from the main rotor rpm
ins.update_harmonic_notch_freq_hz(MAX(ref_freq, rpm * ref / 60.0f)); ins.update_harmonic_notch_freq_hz(MAX(ref_freq, rpm * ref * (1/60.0)));
} else { } else {
ins.update_harmonic_notch_freq_hz(ref_freq); ins.update_harmonic_notch_freq_hz(ref_freq);
} }

View File

@ -175,7 +175,7 @@ float Tiltrotor::tilt_max_change(bool up, bool in_flap_range) const
rate = MAX(rate, 90); rate = MAX(rate, 90);
} }
} }
return rate * plane.G_Dt / 90.0f; return rate * plane.G_Dt * (1/90.0);
} }
/* /*
@ -196,13 +196,13 @@ void Tiltrotor::slew(float newtilt)
// tilt wings can sustain forward flight with some amount of wing tilt // tilt wings can sustain forward flight with some amount of wing tilt
float Tiltrotor::get_fully_forward_tilt() const float Tiltrotor::get_fully_forward_tilt() const
{ {
return 1.0 - (flap_angle_deg / 90.0); return 1.0 - (flap_angle_deg * (1/90.0));
} }
// return the target tilt value for forward flight // return the target tilt value for forward flight
float Tiltrotor::get_forward_flight_tilt() const float Tiltrotor::get_forward_flight_tilt() const
{ {
return 1.0 - ((flap_angle_deg / 90.0) * SRV_Channels::get_slew_limited_output_scaled(SRV_Channel::k_flap_auto) * 0.01); return 1.0 - ((flap_angle_deg * (1/90.0)) * SRV_Channels::get_slew_limited_output_scaled(SRV_Channel::k_flap_auto) * 0.01);
} }
/* /*
@ -305,8 +305,8 @@ void Tiltrotor::continuous_update(void)
// Q_TILT_MAX. Anything above 50% throttle gets // Q_TILT_MAX. Anything above 50% throttle gets
// Q_TILT_MAX. Below 50% throttle we decrease linearly. This // Q_TILT_MAX. Below 50% throttle we decrease linearly. This
// relies heavily on Q_VFWD_GAIN being set appropriately. // relies heavily on Q_VFWD_GAIN being set appropriately.
float settilt = constrain_float((SRV_Channels::get_output_scaled(SRV_Channel::k_throttle)-MAX(plane.aparm.throttle_min.get(),0)) / 50.0f, 0, 1); float settilt = constrain_float((SRV_Channels::get_output_scaled(SRV_Channel::k_throttle)-MAX(plane.aparm.throttle_min.get(),0)) * 0.02, 0, 1);
slew(MIN(settilt * max_angle_deg / 90.0f, get_forward_flight_tilt())); slew(MIN(settilt * max_angle_deg * (1/90.0), get_forward_flight_tilt()));
} }
} }
@ -527,9 +527,9 @@ void Tiltrotor::vectoring(void)
// base the tilt on elevon mixing, which means it // base the tilt on elevon mixing, which means it
// takes account of the MIXING_GAIN. The rear tilt is // takes account of the MIXING_GAIN. The rear tilt is
// based on elevator // based on elevator
const float right = gain * SRV_Channels::get_output_scaled(SRV_Channel::k_elevon_right) / 4500.0; const float right = gain * SRV_Channels::get_output_scaled(SRV_Channel::k_elevon_right) * (1/4500.0);
const float left = gain * SRV_Channels::get_output_scaled(SRV_Channel::k_elevon_left) / 4500.0; const float left = gain * SRV_Channels::get_output_scaled(SRV_Channel::k_elevon_left) * (1/4500.0);
const float mid = gain * SRV_Channels::get_output_scaled(SRV_Channel::k_elevator) / 4500.0; const float mid = gain * SRV_Channels::get_output_scaled(SRV_Channel::k_elevator) * (1/4500.0);
// front tilt is effective canards, so need to swap and use negative. Rear motors are treated live elevons. // front tilt is effective canards, so need to swap and use negative. Rear motors are treated live elevons.
SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorLeft,1000 * constrain_float(base_output - right,0,1)); SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorLeft,1000 * constrain_float(base_output - right,0,1));
SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorRight,1000 * constrain_float(base_output - left,0,1)); SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorRight,1000 * constrain_float(base_output - left,0,1));
@ -547,9 +547,9 @@ void Tiltrotor::vectoring(void)
// we don't want tilt impacted by airspeed // we don't want tilt impacted by airspeed
const float scaler = plane.control_mode == &plane.mode_manual?1:(quadplane.FW_vector_throttle_scaling() / plane.get_speed_scaler()); const float scaler = plane.control_mode == &plane.mode_manual?1:(quadplane.FW_vector_throttle_scaling() / plane.get_speed_scaler());
const float gain = fixed_gain * fixed_tilt_limit * scaler; const float gain = fixed_gain * fixed_tilt_limit * scaler;
const float right = gain * SRV_Channels::get_output_scaled(SRV_Channel::k_elevon_right) / 4500.0; const float right = gain * SRV_Channels::get_output_scaled(SRV_Channel::k_elevon_right) * (1/4500.0);
const float left = gain * SRV_Channels::get_output_scaled(SRV_Channel::k_elevon_left) / 4500.0; const float left = gain * SRV_Channels::get_output_scaled(SRV_Channel::k_elevon_left) * (1/4500.0);
const float mid = gain * SRV_Channels::get_output_scaled(SRV_Channel::k_elevator) / 4500.0; const float mid = gain * SRV_Channels::get_output_scaled(SRV_Channel::k_elevator) * (1/4500.0);
SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorLeft,1000 * constrain_float(base_output - right,0,1)); SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorLeft,1000 * constrain_float(base_output - right,0,1));
SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorRight,1000 * constrain_float(base_output - left,0,1)); SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorRight,1000 * constrain_float(base_output - left,0,1));
SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorRearLeft,1000 * constrain_float(base_output + left,0,1)); SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorRearLeft,1000 * constrain_float(base_output + left,0,1));
@ -607,10 +607,10 @@ void Tiltrotor::bicopter_output(void)
float tilt_right = SRV_Channels::get_output_scaled(SRV_Channel::k_tiltMotorRight); float tilt_right = SRV_Channels::get_output_scaled(SRV_Channel::k_tiltMotorRight);
if (is_negative(tilt_left)) { if (is_negative(tilt_left)) {
tilt_left *= tilt_yaw_angle / 90.0f; tilt_left *= tilt_yaw_angle * (1/90.0);
} }
if (is_negative(tilt_right)) { if (is_negative(tilt_right)) {
tilt_right *= tilt_yaw_angle / 90.0f; tilt_right *= tilt_yaw_angle * (1/90.0);
} }
// reduce authority of bicopter as motors are tilted forwards // reduce authority of bicopter as motors are tilted forwards