AP_InertialSensor: add rpm-based motor noise to gyros and accels

Remove sample time error in backend.
This commit is contained in:
Andy Piper 2019-09-27 20:56:45 +01:00 committed by Andrew Tridgell
parent 39e948a40a
commit 143a071788
3 changed files with 77 additions and 23 deletions

View File

@ -177,6 +177,7 @@ void AP_InertialSensor_Backend::_notify_new_gyro_raw_sample(uint8_t instance,
dt = 1.0f / _imu._gyro_raw_sample_rates[instance]; dt = 1.0f / _imu._gyro_raw_sample_rates[instance];
_imu._gyro_last_sample_us[instance] = AP_HAL::micros64(); _imu._gyro_last_sample_us[instance] = AP_HAL::micros64();
sample_us = _imu._gyro_last_sample_us[instance];
} }
#if AP_MODULE_SUPPORTED #if AP_MODULE_SUPPORTED
@ -353,6 +354,7 @@ void AP_InertialSensor_Backend::_notify_new_accel_raw_sample(uint8_t instance,
dt = 1.0f / _imu._accel_raw_sample_rates[instance]; dt = 1.0f / _imu._accel_raw_sample_rates[instance];
_imu._accel_last_sample_us[instance] = AP_HAL::micros64(); _imu._accel_last_sample_us[instance] = AP_HAL::micros64();
sample_us = _imu._accel_last_sample_us[instance];
} }
#if AP_MODULE_SUPPORTED #if AP_MODULE_SUPPORTED

View File

@ -66,24 +66,44 @@ void AP_InertialSensor_SITL::generate_accel(uint8_t instance)
if (sitl->motors_on) { if (sitl->motors_on) {
// add extra noise when the motors are on // add extra noise when the motors are on
accel_noise += instance==0?sitl->accel_noise:sitl->accel2_noise; accel_noise += instance == 0 ? sitl->accel_noise : sitl->accel2_noise;
} }
// add accel bias and noise // add accel bias and noise
Vector3f accel_bias = instance==0?sitl->accel_bias.get():sitl->accel2_bias.get(); Vector3f accel_bias = instance == 0 ? sitl->accel_bias.get() : sitl->accel2_bias.get();
float xAccel = sitl->state.xAccel + accel_bias.x; float xAccel = sitl->state.xAccel + accel_bias.x;
float yAccel = sitl->state.yAccel + accel_bias.y; float yAccel = sitl->state.yAccel + accel_bias.y;
float zAccel = sitl->state.zAccel + accel_bias.z; float zAccel = sitl->state.zAccel + accel_bias.z;
const Vector3f &vibe_freq = sitl->vibe_freq; const Vector3f &vibe_freq = sitl->vibe_freq;
if (vibe_freq.is_zero()) { bool vibe_motor = !is_zero(sitl->vibe_motor);
if (vibe_freq.is_zero() && !vibe_motor) {
xAccel += accel_noise * rand_float(); xAccel += accel_noise * rand_float();
yAccel += accel_noise * rand_float(); yAccel += accel_noise * rand_float();
zAccel += accel_noise * rand_float(); zAccel += accel_noise * rand_float();
} else { } else {
float t = AP_HAL::micros() * 1.0e-6f; if (vibe_motor) {
xAccel += sinf(t * 2 * M_PI * vibe_freq.x) * accel_noise; for (uint8_t i = 0; i < sitl->state.num_motors; i++) {
yAccel += sinf(t * 2 * M_PI * vibe_freq.y) * accel_noise; float& phase = accel_motor_phase[instance][i];
zAccel += sinf(t * 2 * M_PI * vibe_freq.z) * accel_noise; float motor_freq = sitl->state.rpm[i] / 60.0f;
float phase_incr = motor_freq * 2 * M_PI / accel_sample_hz[instance];
phase += phase_incr;
if (phase_incr > M_PI) {
phase -= 2 * M_PI;
}
else if (phase_incr < -M_PI) {
phase += 2 * M_PI;
}
xAccel += sinf(phase) * accel_noise;
yAccel += sinf(phase) * accel_noise;
zAccel += sinf(phase) * accel_noise;
}
}
if (!vibe_freq.is_zero()) {
float t = AP_HAL::micros() * 1.0e-6f;
xAccel += sinf(t * 2 * M_PI * vibe_freq.x) * accel_noise;
yAccel += sinf(t * 2 * M_PI * vibe_freq.y) * accel_noise;
zAccel += sinf(t * 2 * M_PI * vibe_freq.z) * accel_noise;
}
} }
// correct for the acceleration due to the IMU position offset and angular acceleration // correct for the acceleration due to the IMU position offset and angular acceleration
@ -116,7 +136,7 @@ void AP_InertialSensor_SITL::generate_accel(uint8_t instance)
_rotate_and_correct_accel(accel_instance[instance], accel); _rotate_and_correct_accel(accel_instance[instance], accel);
uint8_t nsamples = enable_fast_sampling(accel_instance[instance])?4:1; uint8_t nsamples = enable_fast_sampling(accel_instance[instance]) ? 4 : 1;
for (uint8_t i=0; i<nsamples; i++) { for (uint8_t i=0; i<nsamples; i++) {
_notify_new_accel_raw_sample(accel_instance[instance], accel); _notify_new_accel_raw_sample(accel_instance[instance], accel);
} }
@ -142,29 +162,50 @@ void AP_InertialSensor_SITL::generate_gyro(uint8_t instance)
float r = radians(sitl->state.yawRate) + gyro_drift(); float r = radians(sitl->state.yawRate) + gyro_drift();
const Vector3f &vibe_freq = sitl->vibe_freq; const Vector3f &vibe_freq = sitl->vibe_freq;
if (vibe_freq.is_zero()) { bool vibe_motor = !is_zero(sitl->vibe_motor);
if (vibe_freq.is_zero() && !vibe_motor) {
p += gyro_noise * rand_float(); p += gyro_noise * rand_float();
q += gyro_noise * rand_float(); q += gyro_noise * rand_float();
r += gyro_noise * rand_float(); r += gyro_noise * rand_float();
} else { } else {
float t = AP_HAL::micros() * 1.0e-6f; if (vibe_motor) {
p += sinf(t * 2 * M_PI * vibe_freq.x) * gyro_noise; for (uint8_t i = 0; i < sitl->state.num_motors; i++) {
q += sinf(t * 2 * M_PI * vibe_freq.y) * gyro_noise; float motor_freq = sitl->state.rpm[i] / 60.0f;
r += sinf(t * 2 * M_PI * vibe_freq.z) * gyro_noise; float phase_incr = motor_freq * 2 * M_PI / gyro_sample_hz[instance];
float& phase = gyro_motor_phase[instance][i];
phase += phase_incr;
if (phase_incr > M_PI) {
phase -= 2 * M_PI;
}
else if (phase_incr < -M_PI) {
phase += 2 * M_PI;
}
p += sinf(phase) * gyro_noise;
q += sinf(phase) * gyro_noise;
r += sinf(phase) * gyro_noise;
}
}
if (!vibe_freq.is_zero()) {
float t = AP_HAL::micros() * 1.0e-6f;
p += sinf(t * 2 * M_PI * vibe_freq.x) * gyro_noise;
q += sinf(t * 2 * M_PI * vibe_freq.y) * gyro_noise;
r += sinf(t * 2 * M_PI * vibe_freq.z) * gyro_noise;
}
} }
Vector3f gyro = Vector3f(p, q, r); Vector3f gyro = Vector3f(p, q, r);
// add in gyro scaling // add in gyro scaling
Vector3f scale = sitl->gyro_scale; Vector3f scale = sitl->gyro_scale;
gyro.x *= (1 + scale.x*0.01f); gyro.x *= (1 + scale.x * 0.01f);
gyro.y *= (1 + scale.y*0.01f); gyro.y *= (1 + scale.y * 0.01f);
gyro.z *= (1 + scale.z*0.01f); gyro.z *= (1 + scale.z * 0.01f);
_rotate_and_correct_gyro(gyro_instance[instance], gyro); _rotate_and_correct_gyro(gyro_instance[instance], gyro);
uint8_t nsamples = enable_fast_sampling(gyro_instance[instance])?8:1; uint8_t nsamples = enable_fast_sampling(gyro_instance[instance]) ? 8 : 1;
for (uint8_t i=0; i<nsamples; i++) { for (uint8_t i = 0; i < nsamples; i++) {
_notify_new_gyro_raw_sample(gyro_instance[instance], gyro); _notify_new_gyro_raw_sample(gyro_instance[instance], gyro);
} }
} }
@ -183,16 +224,26 @@ void AP_InertialSensor_SITL::timer_update(void)
if (now >= next_accel_sample[i]) { if (now >= next_accel_sample[i]) {
if (((1U<<i) & sitl->accel_fail_mask) == 0) { if (((1U<<i) & sitl->accel_fail_mask) == 0) {
generate_accel(i); generate_accel(i);
while (now >= next_accel_sample[i]) { if (next_accel_sample[i] == 0) {
next_accel_sample[i] += 1000000UL / accel_sample_hz[i]; next_accel_sample[i] = now + 1000000UL / accel_sample_hz[i];
}
else {
while (now >= next_accel_sample[i]) {
next_accel_sample[i] += 1000000UL / accel_sample_hz[i];
}
} }
} }
} }
if (now >= next_gyro_sample[i]) { if (now >= next_gyro_sample[i]) {
if (((1U<<i) & sitl->gyro_fail_mask) == 0) { if (((1U<<i) & sitl->gyro_fail_mask) == 0) {
generate_gyro(i); generate_gyro(i);
while (now >= next_gyro_sample[i]) { if (next_gyro_sample[i] == 0) {
next_gyro_sample[i] += 1000000UL / gyro_sample_hz[i]; next_gyro_sample[i] = now + 1000000UL / gyro_sample_hz[i];
}
else {
while (now >= next_gyro_sample[i]) {
next_gyro_sample[i] += 1000000UL / gyro_sample_hz[i];
}
} }
} }
} }
@ -211,7 +262,6 @@ float AP_InertialSensor_SITL::gyro_drift(void)
return minutes * ToRad(sitl->drift_speed); return minutes * ToRad(sitl->drift_speed);
} }
return (period - minutes) * ToRad(sitl->drift_speed); return (period - minutes) * ToRad(sitl->drift_speed);
} }

View File

@ -36,5 +36,7 @@ private:
uint8_t accel_instance[INS_SITL_INSTANCES]; uint8_t accel_instance[INS_SITL_INSTANCES];
uint64_t next_gyro_sample[INS_SITL_INSTANCES]; uint64_t next_gyro_sample[INS_SITL_INSTANCES];
uint64_t next_accel_sample[INS_SITL_INSTANCES]; uint64_t next_accel_sample[INS_SITL_INSTANCES];
float gyro_motor_phase[INS_SITL_INSTANCES][12];
float accel_motor_phase[INS_SITL_INSTANCES][12];
}; };
#endif // CONFIG_HAL_BOARD #endif // CONFIG_HAL_BOARD