mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-10 18:08:30 -04:00
AP_InertialSensor: add rpm-based motor noise to gyros and accels
Remove sample time error in backend.
This commit is contained in:
parent
39e948a40a
commit
143a071788
@ -177,6 +177,7 @@ void AP_InertialSensor_Backend::_notify_new_gyro_raw_sample(uint8_t instance,
|
|||||||
|
|
||||||
dt = 1.0f / _imu._gyro_raw_sample_rates[instance];
|
dt = 1.0f / _imu._gyro_raw_sample_rates[instance];
|
||||||
_imu._gyro_last_sample_us[instance] = AP_HAL::micros64();
|
_imu._gyro_last_sample_us[instance] = AP_HAL::micros64();
|
||||||
|
sample_us = _imu._gyro_last_sample_us[instance];
|
||||||
}
|
}
|
||||||
|
|
||||||
#if AP_MODULE_SUPPORTED
|
#if AP_MODULE_SUPPORTED
|
||||||
@ -353,6 +354,7 @@ void AP_InertialSensor_Backend::_notify_new_accel_raw_sample(uint8_t instance,
|
|||||||
|
|
||||||
dt = 1.0f / _imu._accel_raw_sample_rates[instance];
|
dt = 1.0f / _imu._accel_raw_sample_rates[instance];
|
||||||
_imu._accel_last_sample_us[instance] = AP_HAL::micros64();
|
_imu._accel_last_sample_us[instance] = AP_HAL::micros64();
|
||||||
|
sample_us = _imu._accel_last_sample_us[instance];
|
||||||
}
|
}
|
||||||
|
|
||||||
#if AP_MODULE_SUPPORTED
|
#if AP_MODULE_SUPPORTED
|
||||||
|
@ -66,24 +66,44 @@ void AP_InertialSensor_SITL::generate_accel(uint8_t instance)
|
|||||||
|
|
||||||
if (sitl->motors_on) {
|
if (sitl->motors_on) {
|
||||||
// add extra noise when the motors are on
|
// add extra noise when the motors are on
|
||||||
accel_noise += instance==0?sitl->accel_noise:sitl->accel2_noise;
|
accel_noise += instance == 0 ? sitl->accel_noise : sitl->accel2_noise;
|
||||||
}
|
}
|
||||||
|
|
||||||
// add accel bias and noise
|
// add accel bias and noise
|
||||||
Vector3f accel_bias = instance==0?sitl->accel_bias.get():sitl->accel2_bias.get();
|
Vector3f accel_bias = instance == 0 ? sitl->accel_bias.get() : sitl->accel2_bias.get();
|
||||||
float xAccel = sitl->state.xAccel + accel_bias.x;
|
float xAccel = sitl->state.xAccel + accel_bias.x;
|
||||||
float yAccel = sitl->state.yAccel + accel_bias.y;
|
float yAccel = sitl->state.yAccel + accel_bias.y;
|
||||||
float zAccel = sitl->state.zAccel + accel_bias.z;
|
float zAccel = sitl->state.zAccel + accel_bias.z;
|
||||||
const Vector3f &vibe_freq = sitl->vibe_freq;
|
const Vector3f &vibe_freq = sitl->vibe_freq;
|
||||||
if (vibe_freq.is_zero()) {
|
bool vibe_motor = !is_zero(sitl->vibe_motor);
|
||||||
|
if (vibe_freq.is_zero() && !vibe_motor) {
|
||||||
xAccel += accel_noise * rand_float();
|
xAccel += accel_noise * rand_float();
|
||||||
yAccel += accel_noise * rand_float();
|
yAccel += accel_noise * rand_float();
|
||||||
zAccel += accel_noise * rand_float();
|
zAccel += accel_noise * rand_float();
|
||||||
} else {
|
} else {
|
||||||
float t = AP_HAL::micros() * 1.0e-6f;
|
if (vibe_motor) {
|
||||||
xAccel += sinf(t * 2 * M_PI * vibe_freq.x) * accel_noise;
|
for (uint8_t i = 0; i < sitl->state.num_motors; i++) {
|
||||||
yAccel += sinf(t * 2 * M_PI * vibe_freq.y) * accel_noise;
|
float& phase = accel_motor_phase[instance][i];
|
||||||
zAccel += sinf(t * 2 * M_PI * vibe_freq.z) * accel_noise;
|
float motor_freq = sitl->state.rpm[i] / 60.0f;
|
||||||
|
float phase_incr = motor_freq * 2 * M_PI / accel_sample_hz[instance];
|
||||||
|
phase += phase_incr;
|
||||||
|
if (phase_incr > M_PI) {
|
||||||
|
phase -= 2 * M_PI;
|
||||||
|
}
|
||||||
|
else if (phase_incr < -M_PI) {
|
||||||
|
phase += 2 * M_PI;
|
||||||
|
}
|
||||||
|
xAccel += sinf(phase) * accel_noise;
|
||||||
|
yAccel += sinf(phase) * accel_noise;
|
||||||
|
zAccel += sinf(phase) * accel_noise;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (!vibe_freq.is_zero()) {
|
||||||
|
float t = AP_HAL::micros() * 1.0e-6f;
|
||||||
|
xAccel += sinf(t * 2 * M_PI * vibe_freq.x) * accel_noise;
|
||||||
|
yAccel += sinf(t * 2 * M_PI * vibe_freq.y) * accel_noise;
|
||||||
|
zAccel += sinf(t * 2 * M_PI * vibe_freq.z) * accel_noise;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// correct for the acceleration due to the IMU position offset and angular acceleration
|
// correct for the acceleration due to the IMU position offset and angular acceleration
|
||||||
@ -116,7 +136,7 @@ void AP_InertialSensor_SITL::generate_accel(uint8_t instance)
|
|||||||
|
|
||||||
_rotate_and_correct_accel(accel_instance[instance], accel);
|
_rotate_and_correct_accel(accel_instance[instance], accel);
|
||||||
|
|
||||||
uint8_t nsamples = enable_fast_sampling(accel_instance[instance])?4:1;
|
uint8_t nsamples = enable_fast_sampling(accel_instance[instance]) ? 4 : 1;
|
||||||
for (uint8_t i=0; i<nsamples; i++) {
|
for (uint8_t i=0; i<nsamples; i++) {
|
||||||
_notify_new_accel_raw_sample(accel_instance[instance], accel);
|
_notify_new_accel_raw_sample(accel_instance[instance], accel);
|
||||||
}
|
}
|
||||||
@ -142,29 +162,50 @@ void AP_InertialSensor_SITL::generate_gyro(uint8_t instance)
|
|||||||
float r = radians(sitl->state.yawRate) + gyro_drift();
|
float r = radians(sitl->state.yawRate) + gyro_drift();
|
||||||
|
|
||||||
const Vector3f &vibe_freq = sitl->vibe_freq;
|
const Vector3f &vibe_freq = sitl->vibe_freq;
|
||||||
if (vibe_freq.is_zero()) {
|
bool vibe_motor = !is_zero(sitl->vibe_motor);
|
||||||
|
if (vibe_freq.is_zero() && !vibe_motor) {
|
||||||
p += gyro_noise * rand_float();
|
p += gyro_noise * rand_float();
|
||||||
q += gyro_noise * rand_float();
|
q += gyro_noise * rand_float();
|
||||||
r += gyro_noise * rand_float();
|
r += gyro_noise * rand_float();
|
||||||
} else {
|
} else {
|
||||||
float t = AP_HAL::micros() * 1.0e-6f;
|
if (vibe_motor) {
|
||||||
p += sinf(t * 2 * M_PI * vibe_freq.x) * gyro_noise;
|
for (uint8_t i = 0; i < sitl->state.num_motors; i++) {
|
||||||
q += sinf(t * 2 * M_PI * vibe_freq.y) * gyro_noise;
|
float motor_freq = sitl->state.rpm[i] / 60.0f;
|
||||||
r += sinf(t * 2 * M_PI * vibe_freq.z) * gyro_noise;
|
float phase_incr = motor_freq * 2 * M_PI / gyro_sample_hz[instance];
|
||||||
|
float& phase = gyro_motor_phase[instance][i];
|
||||||
|
phase += phase_incr;
|
||||||
|
if (phase_incr > M_PI) {
|
||||||
|
phase -= 2 * M_PI;
|
||||||
|
}
|
||||||
|
else if (phase_incr < -M_PI) {
|
||||||
|
phase += 2 * M_PI;
|
||||||
|
}
|
||||||
|
|
||||||
|
p += sinf(phase) * gyro_noise;
|
||||||
|
q += sinf(phase) * gyro_noise;
|
||||||
|
r += sinf(phase) * gyro_noise;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (!vibe_freq.is_zero()) {
|
||||||
|
float t = AP_HAL::micros() * 1.0e-6f;
|
||||||
|
p += sinf(t * 2 * M_PI * vibe_freq.x) * gyro_noise;
|
||||||
|
q += sinf(t * 2 * M_PI * vibe_freq.y) * gyro_noise;
|
||||||
|
r += sinf(t * 2 * M_PI * vibe_freq.z) * gyro_noise;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
Vector3f gyro = Vector3f(p, q, r);
|
Vector3f gyro = Vector3f(p, q, r);
|
||||||
|
|
||||||
// add in gyro scaling
|
// add in gyro scaling
|
||||||
Vector3f scale = sitl->gyro_scale;
|
Vector3f scale = sitl->gyro_scale;
|
||||||
gyro.x *= (1 + scale.x*0.01f);
|
gyro.x *= (1 + scale.x * 0.01f);
|
||||||
gyro.y *= (1 + scale.y*0.01f);
|
gyro.y *= (1 + scale.y * 0.01f);
|
||||||
gyro.z *= (1 + scale.z*0.01f);
|
gyro.z *= (1 + scale.z * 0.01f);
|
||||||
|
|
||||||
_rotate_and_correct_gyro(gyro_instance[instance], gyro);
|
_rotate_and_correct_gyro(gyro_instance[instance], gyro);
|
||||||
|
|
||||||
uint8_t nsamples = enable_fast_sampling(gyro_instance[instance])?8:1;
|
uint8_t nsamples = enable_fast_sampling(gyro_instance[instance]) ? 8 : 1;
|
||||||
for (uint8_t i=0; i<nsamples; i++) {
|
for (uint8_t i = 0; i < nsamples; i++) {
|
||||||
_notify_new_gyro_raw_sample(gyro_instance[instance], gyro);
|
_notify_new_gyro_raw_sample(gyro_instance[instance], gyro);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -183,16 +224,26 @@ void AP_InertialSensor_SITL::timer_update(void)
|
|||||||
if (now >= next_accel_sample[i]) {
|
if (now >= next_accel_sample[i]) {
|
||||||
if (((1U<<i) & sitl->accel_fail_mask) == 0) {
|
if (((1U<<i) & sitl->accel_fail_mask) == 0) {
|
||||||
generate_accel(i);
|
generate_accel(i);
|
||||||
while (now >= next_accel_sample[i]) {
|
if (next_accel_sample[i] == 0) {
|
||||||
next_accel_sample[i] += 1000000UL / accel_sample_hz[i];
|
next_accel_sample[i] = now + 1000000UL / accel_sample_hz[i];
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
while (now >= next_accel_sample[i]) {
|
||||||
|
next_accel_sample[i] += 1000000UL / accel_sample_hz[i];
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
if (now >= next_gyro_sample[i]) {
|
if (now >= next_gyro_sample[i]) {
|
||||||
if (((1U<<i) & sitl->gyro_fail_mask) == 0) {
|
if (((1U<<i) & sitl->gyro_fail_mask) == 0) {
|
||||||
generate_gyro(i);
|
generate_gyro(i);
|
||||||
while (now >= next_gyro_sample[i]) {
|
if (next_gyro_sample[i] == 0) {
|
||||||
next_gyro_sample[i] += 1000000UL / gyro_sample_hz[i];
|
next_gyro_sample[i] = now + 1000000UL / gyro_sample_hz[i];
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
while (now >= next_gyro_sample[i]) {
|
||||||
|
next_gyro_sample[i] += 1000000UL / gyro_sample_hz[i];
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -211,7 +262,6 @@ float AP_InertialSensor_SITL::gyro_drift(void)
|
|||||||
return minutes * ToRad(sitl->drift_speed);
|
return minutes * ToRad(sitl->drift_speed);
|
||||||
}
|
}
|
||||||
return (period - minutes) * ToRad(sitl->drift_speed);
|
return (period - minutes) * ToRad(sitl->drift_speed);
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@ -36,5 +36,7 @@ private:
|
|||||||
uint8_t accel_instance[INS_SITL_INSTANCES];
|
uint8_t accel_instance[INS_SITL_INSTANCES];
|
||||||
uint64_t next_gyro_sample[INS_SITL_INSTANCES];
|
uint64_t next_gyro_sample[INS_SITL_INSTANCES];
|
||||||
uint64_t next_accel_sample[INS_SITL_INSTANCES];
|
uint64_t next_accel_sample[INS_SITL_INSTANCES];
|
||||||
|
float gyro_motor_phase[INS_SITL_INSTANCES][12];
|
||||||
|
float accel_motor_phase[INS_SITL_INSTANCES][12];
|
||||||
};
|
};
|
||||||
#endif // CONFIG_HAL_BOARD
|
#endif // CONFIG_HAL_BOARD
|
||||||
|
Loading…
Reference in New Issue
Block a user