mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-23 09:08:30 -04:00
TradHeli: make parameters and variables private
add accessors for variables and params required in main code replace tabs with spaces
This commit is contained in:
parent
72597cc5bd
commit
13a412ee21
@ -35,7 +35,7 @@ const AP_Param::GroupInfo AP_MotorsHeli::var_info[] PROGMEM = {
|
||||
// @Units: Degrees
|
||||
// @User: Standard
|
||||
// @Increment: 1
|
||||
AP_GROUPINFO("SV1_POS", 1, AP_MotorsHeli, servo1_pos, AP_MOTORS_HELI_SERVO1_POS),
|
||||
AP_GROUPINFO("SV1_POS", 1, AP_MotorsHeli, _servo1_pos, AP_MOTORS_HELI_SERVO1_POS),
|
||||
|
||||
// @Param: SV2_POS
|
||||
// @DisplayName: Servo 2 Position
|
||||
@ -44,7 +44,7 @@ const AP_Param::GroupInfo AP_MotorsHeli::var_info[] PROGMEM = {
|
||||
// @Units: Degrees
|
||||
// @User: Standard
|
||||
// @Increment: 1
|
||||
AP_GROUPINFO("SV2_POS", 2, AP_MotorsHeli, servo2_pos, AP_MOTORS_HELI_SERVO2_POS),
|
||||
AP_GROUPINFO("SV2_POS", 2, AP_MotorsHeli, _servo2_pos, AP_MOTORS_HELI_SERVO2_POS),
|
||||
|
||||
// @Param: SV3_POS
|
||||
// @DisplayName: Servo 3 Position
|
||||
@ -53,7 +53,7 @@ const AP_Param::GroupInfo AP_MotorsHeli::var_info[] PROGMEM = {
|
||||
// @Units: Degrees
|
||||
// @User: Standard
|
||||
// @Increment: 1
|
||||
AP_GROUPINFO("SV3_POS", 3, AP_MotorsHeli, servo3_pos, AP_MOTORS_HELI_SERVO3_POS),
|
||||
AP_GROUPINFO("SV3_POS", 3, AP_MotorsHeli, _servo3_pos, AP_MOTORS_HELI_SERVO3_POS),
|
||||
|
||||
// @Param: ROL_MAX
|
||||
// @DisplayName: Swash Roll Angle Max
|
||||
@ -62,7 +62,7 @@ const AP_Param::GroupInfo AP_MotorsHeli::var_info[] PROGMEM = {
|
||||
// @Units: Centi-Degrees
|
||||
// @Increment: 100
|
||||
// @User: Advanced
|
||||
AP_GROUPINFO("ROL_MAX", 4, AP_MotorsHeli, roll_max, AP_MOTORS_HELI_SWASH_ROLL_MAX),
|
||||
AP_GROUPINFO("ROL_MAX", 4, AP_MotorsHeli, _roll_max, AP_MOTORS_HELI_SWASH_ROLL_MAX),
|
||||
|
||||
// @Param: PIT_MAX
|
||||
// @DisplayName: Swash Pitch Angle Max
|
||||
@ -71,7 +71,7 @@ const AP_Param::GroupInfo AP_MotorsHeli::var_info[] PROGMEM = {
|
||||
// @Units: Centi-Degrees
|
||||
// @Increment: 100
|
||||
// @User: Advanced
|
||||
AP_GROUPINFO("PIT_MAX", 5, AP_MotorsHeli, pitch_max, AP_MOTORS_HELI_SWASH_PITCH_MAX),
|
||||
AP_GROUPINFO("PIT_MAX", 5, AP_MotorsHeli, _pitch_max, AP_MOTORS_HELI_SWASH_PITCH_MAX),
|
||||
|
||||
// @Param: COL_MIN
|
||||
// @DisplayName: Collective Pitch Minimum
|
||||
@ -80,7 +80,7 @@ const AP_Param::GroupInfo AP_MotorsHeli::var_info[] PROGMEM = {
|
||||
// @Units: PWM
|
||||
// @Increment: 1
|
||||
// @User: Standard
|
||||
AP_GROUPINFO("COL_MIN", 6, AP_MotorsHeli, collective_min, AP_MOTORS_HELI_COLLECTIVE_MIN),
|
||||
AP_GROUPINFO("COL_MIN", 6, AP_MotorsHeli, _collective_min, AP_MOTORS_HELI_COLLECTIVE_MIN),
|
||||
|
||||
// @Param: COL_MAX
|
||||
// @DisplayName: Collective Pitch Maximum
|
||||
@ -89,7 +89,7 @@ const AP_Param::GroupInfo AP_MotorsHeli::var_info[] PROGMEM = {
|
||||
// @Units: PWM
|
||||
// @Increment: 1
|
||||
// @User: Standard
|
||||
AP_GROUPINFO("COL_MAX", 7, AP_MotorsHeli, collective_max, AP_MOTORS_HELI_COLLECTIVE_MAX),
|
||||
AP_GROUPINFO("COL_MAX", 7, AP_MotorsHeli, _collective_max, AP_MOTORS_HELI_COLLECTIVE_MAX),
|
||||
|
||||
// @Param: COL_MID
|
||||
// @DisplayName: Collective Pitch Mid-Point
|
||||
@ -98,21 +98,21 @@ const AP_Param::GroupInfo AP_MotorsHeli::var_info[] PROGMEM = {
|
||||
// @Units: PWM
|
||||
// @Increment: 1
|
||||
// @User: Standard
|
||||
AP_GROUPINFO("COL_MID", 8, AP_MotorsHeli, collective_mid, AP_MOTORS_HELI_COLLECTIVE_MID),
|
||||
AP_GROUPINFO("COL_MID", 8, AP_MotorsHeli, _collective_mid, AP_MOTORS_HELI_COLLECTIVE_MID),
|
||||
|
||||
// @Param: GYR_ENABLE
|
||||
// @DisplayName: External Gyro Enabled
|
||||
// @Description: Enabled/Disable an external rudder gyro connected to channel 7. With no external gyro a more complex yaw controller is used
|
||||
// @Values: 0:Disabled,1:Enabled
|
||||
// @User: Standard
|
||||
AP_GROUPINFO("GYR_ENABLE", 9, AP_MotorsHeli, ext_gyro_enabled, 0),
|
||||
AP_GROUPINFO("GYR_ENABLE",9, AP_MotorsHeli, _ext_gyro_enabled, 0),
|
||||
|
||||
// @Param: SWASH_TYPE
|
||||
// @DisplayName: Swash Type
|
||||
// @Description: Swash Type Setting - either 3-servo CCPM or H1 Mechanical Mixing
|
||||
// @Values: 0:3-Servo CCPM, 1:H1 Mechanical Mixing
|
||||
// @User: Standard
|
||||
AP_GROUPINFO("SWASH_TYPE", 10, AP_MotorsHeli, swash_type, AP_MOTORS_HELI_SWASH_CCPM),
|
||||
AP_GROUPINFO("SWASH_TYPE",10, AP_MotorsHeli, _swash_type, AP_MOTORS_HELI_SWASH_CCPM),
|
||||
|
||||
// @Param: GYR_GAIN
|
||||
// @DisplayName: External Gyro Gain
|
||||
@ -121,14 +121,14 @@ const AP_Param::GroupInfo AP_MotorsHeli::var_info[] PROGMEM = {
|
||||
// @Units: PWM
|
||||
// @Increment: 10
|
||||
// @User: Standard
|
||||
AP_GROUPINFO("GYR_GAIN", 11, AP_MotorsHeli, ext_gyro_gain, AP_MOTORS_HELI_EXT_GYRO_GAIN),
|
||||
AP_GROUPINFO("GYR_GAIN",11, AP_MotorsHeli, _ext_gyro_gain, AP_MOTORS_HELI_EXT_GYRO_GAIN),
|
||||
|
||||
// @Param: SV_MAN
|
||||
// @DisplayName: Manual Servo Mode
|
||||
// @Description: Pass radio inputs directly to servos for set-up. Do not set this manually!
|
||||
// @Values: 0:Disabled,1:Enabled
|
||||
// @User: Standard
|
||||
AP_GROUPINFO("SV_MAN", 12, AP_MotorsHeli, servo_manual, 0),
|
||||
AP_GROUPINFO("SV_MAN", 12, AP_MotorsHeli, _servo_manual, 0),
|
||||
|
||||
// @Param: PHANG
|
||||
// @DisplayName: Swashplate Phase Angle Compensation
|
||||
@ -137,13 +137,13 @@ const AP_Param::GroupInfo AP_MotorsHeli::var_info[] PROGMEM = {
|
||||
// @Units: Degrees
|
||||
// @User: Advanced
|
||||
// @Increment: 1
|
||||
AP_GROUPINFO("PHANG", 13, AP_MotorsHeli, phase_angle, 0),
|
||||
AP_GROUPINFO("PHANG", 13, AP_MotorsHeli, _phase_angle, 0),
|
||||
|
||||
// @Param: COLYAW
|
||||
// @DisplayName: Collective-Yaw Mixing
|
||||
// @Description: Feed-forward compensation to automatically add rudder input when collective pitch is increased. Can be positive or negative depending on mechanics.
|
||||
// @Range: -10 10
|
||||
AP_GROUPINFO("COLYAW", 14, AP_MotorsHeli, collective_yaw_effect, 0),
|
||||
AP_GROUPINFO("COLYAW", 14, AP_MotorsHeli, _collective_yaw_effect, 0),
|
||||
|
||||
// @Param: GOV_SETPOINT
|
||||
// @DisplayName: External Motor Governor Setpoint
|
||||
@ -152,14 +152,14 @@ const AP_Param::GroupInfo AP_MotorsHeli::var_info[] PROGMEM = {
|
||||
// @Units: PWM
|
||||
// @Increment: 10
|
||||
// @User: Standard
|
||||
AP_GROUPINFO("GOV_SETPOINT", 15, AP_MotorsHeli, ext_gov_setpoint, AP_MOTORS_HELI_EXT_GOVERNOR_SETPOINT),
|
||||
AP_GROUPINFO("GOV_SETPOINT", 15, AP_MotorsHeli, _ext_gov_setpoint, AP_MOTORS_HELI_EXT_GOVERNOR_SETPOINT),
|
||||
|
||||
// @Param: RSC_MODE
|
||||
// @DisplayName: Rotor Speed Control Mode
|
||||
// @Description: Which main rotor ESC control mode is active
|
||||
// @Values: 1:Ch8 passthrough, 2:External Governor
|
||||
// @Values: 0:None, 1:Ch8 passthrough, 2:External Governor
|
||||
// @User: Standard
|
||||
AP_GROUPINFO("RSC_MODE", 16, AP_MotorsHeli, rsc_mode, AP_MOTORS_HELI_RSC_MODE_CH8_PASSTHROUGH),
|
||||
AP_GROUPINFO("RSC_MODE", 16, AP_MotorsHeli, _rsc_mode, AP_MOTORS_HELI_RSC_MODE_CH8_PASSTHROUGH),
|
||||
|
||||
// @Param: RSC_RATE
|
||||
// @DisplayName: RSC Ramp Rate
|
||||
@ -167,41 +167,51 @@ const AP_Param::GroupInfo AP_MotorsHeli::var_info[] PROGMEM = {
|
||||
// @Range: 0 6000
|
||||
// @Units: 100ths of Seconds
|
||||
// @User: Standard
|
||||
AP_GROUPINFO("RSC_RATE", 17, AP_MotorsHeli, rsc_ramp_up_rate, AP_MOTORS_HELI_RSC_RATE),
|
||||
AP_GROUPINFO("RSC_RATE", 17, AP_MotorsHeli, _rsc_ramp_up_rate, AP_MOTORS_HELI_RSC_RATE),
|
||||
|
||||
// @Param: FLYBAR_MODE
|
||||
// @DisplayName: Flybar Mode Selector
|
||||
// @Description: Flybar present or not. Affects attitude controller used during ACRO flight mode
|
||||
// @Range: 0:NoFlybar 1:Flybar
|
||||
// @User: Standard
|
||||
AP_GROUPINFO("FLYBAR_MODE", 18, AP_MotorsHeli, flybar_mode, AP_MOTORS_HELI_NOFLYBAR),
|
||||
AP_GROUPINFO("FLYBAR_MODE", 18, AP_MotorsHeli, _flybar_mode, AP_MOTORS_HELI_NOFLYBAR),
|
||||
|
||||
// @Param: STAB_COL_MIN
|
||||
// @DisplayName: Stabilize Throttle Minimum
|
||||
// @Description: Minimum collective position while flying in Stabilize Mode
|
||||
// @Description: Minimum collective position while pilot directly controls collective
|
||||
// @Range: 0 50
|
||||
// @Units: Percent
|
||||
// @Increment: 1
|
||||
// @User: Standard
|
||||
AP_GROUPINFO("STAB_COL_MIN", 19, AP_MotorsHeli, stab_col_min, AP_MOTORS_HELI_STAB_COL_MIN),
|
||||
AP_GROUPINFO("STAB_COL_MIN", 19, AP_MotorsHeli, _manual_collective_min, AP_MOTORS_HELI_MANUAL_COLLECTIVE_MIN),
|
||||
|
||||
// @Param: STAB_COL_MAX
|
||||
// @DisplayName: Stabilize Throttle Maximum
|
||||
// @Description: Maximum collective position while flying in Stabilize Mode
|
||||
// @Description: Maximum collective position while pilot directly controls collective
|
||||
// @Range: 50 100
|
||||
// @Units: Percent
|
||||
// @Increment: 1
|
||||
// @User: Standard
|
||||
AP_GROUPINFO("STAB_COL_MAX", 20, AP_MotorsHeli, stab_col_max, AP_MOTORS_HELI_STAB_COL_MAX),
|
||||
AP_GROUPINFO("STAB_COL_MAX", 20, AP_MotorsHeli, _manual_collective_max, AP_MOTORS_HELI_MANUAL_COLLECTIVE_MAX),
|
||||
|
||||
AP_GROUPEND
|
||||
};
|
||||
|
||||
//
|
||||
// public methods
|
||||
//
|
||||
|
||||
// init
|
||||
void AP_MotorsHeli::Init()
|
||||
{
|
||||
// set update rate
|
||||
set_update_rate(_speed_hz);
|
||||
|
||||
// ensure inputs are not passed through to servos
|
||||
_servo_manual = 0;
|
||||
|
||||
// initialise swash plate
|
||||
init_swash();
|
||||
}
|
||||
|
||||
// set update rate to motors - a value in hertz
|
||||
@ -238,36 +248,8 @@ void AP_MotorsHeli::output_min()
|
||||
move_swash(0,0,500,0);
|
||||
}
|
||||
|
||||
// output_armed - sends commands to the motors
|
||||
void AP_MotorsHeli::output_armed()
|
||||
{
|
||||
// if manual override (i.e. when setting up swash), pass pilot commands straight through to swash
|
||||
if( servo_manual == 1 ) {
|
||||
_rc_roll->servo_out = _rc_roll->control_in;
|
||||
_rc_pitch->servo_out = _rc_pitch->control_in;
|
||||
_rc_throttle->servo_out = _rc_throttle->control_in;
|
||||
_rc_yaw->servo_out = _rc_yaw->control_in;
|
||||
}
|
||||
|
||||
//static int counter = 0;
|
||||
_rc_roll->calc_pwm();
|
||||
_rc_pitch->calc_pwm();
|
||||
_rc_throttle->calc_pwm();
|
||||
_rc_yaw->calc_pwm();
|
||||
|
||||
move_swash( _rc_roll->servo_out, _rc_pitch->servo_out, _rc_throttle->servo_out, _rc_yaw->servo_out );
|
||||
|
||||
rsc_control();
|
||||
}
|
||||
|
||||
// output_disarmed - sends commands to the motors
|
||||
void AP_MotorsHeli::output_disarmed()
|
||||
{
|
||||
// for helis - armed or disarmed we allow servos to move
|
||||
output_armed();
|
||||
}
|
||||
|
||||
// output_disarmed - sends commands to the motors
|
||||
// output_test - wiggle servos in order to show connections are correct
|
||||
void AP_MotorsHeli::output_test()
|
||||
{
|
||||
int16_t i;
|
||||
@ -305,8 +287,8 @@ void AP_MotorsHeli::output_test()
|
||||
}
|
||||
|
||||
// external gyro
|
||||
if( ext_gyro_enabled ) {
|
||||
hal.rcout->write(AP_MOTORS_HELI_EXT_GYRO, ext_gyro_gain);
|
||||
if (_ext_gyro_enabled) {
|
||||
hal.rcout->write(AP_MOTORS_HELI_EXT_GYRO, _ext_gyro_gain);
|
||||
}
|
||||
|
||||
// servo 4
|
||||
@ -323,6 +305,55 @@ void AP_MotorsHeli::output_test()
|
||||
output_min();
|
||||
}
|
||||
|
||||
// allow_arming - returns true if main rotor is spinning and it is ok to arm
|
||||
bool AP_MotorsHeli::allow_arming()
|
||||
{
|
||||
// ensure main rotor has started
|
||||
if (_rsc_mode != AP_MOTORS_HELI_RSC_MODE_NONE && _rc_8->control_in >= 10) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// all other cases it is ok to arm
|
||||
return true;
|
||||
}
|
||||
|
||||
//
|
||||
// protected methods
|
||||
//
|
||||
|
||||
// output_armed - sends commands to the motors
|
||||
void AP_MotorsHeli::output_armed()
|
||||
{
|
||||
// if manual override (i.e. when setting up swash), pass pilot commands straight through to swash
|
||||
if (_servo_manual == 1) {
|
||||
_rc_roll->servo_out = _rc_roll->control_in;
|
||||
_rc_pitch->servo_out = _rc_pitch->control_in;
|
||||
_rc_throttle->servo_out = _rc_throttle->control_in;
|
||||
_rc_yaw->servo_out = _rc_yaw->control_in;
|
||||
}
|
||||
|
||||
//static int counter = 0;
|
||||
_rc_roll->calc_pwm();
|
||||
_rc_pitch->calc_pwm();
|
||||
_rc_throttle->calc_pwm();
|
||||
_rc_yaw->calc_pwm();
|
||||
|
||||
move_swash( _rc_roll->servo_out, _rc_pitch->servo_out, _rc_throttle->servo_out, _rc_yaw->servo_out );
|
||||
|
||||
rsc_control();
|
||||
}
|
||||
|
||||
// output_disarmed - sends commands to the motors
|
||||
void AP_MotorsHeli::output_disarmed()
|
||||
{
|
||||
// for helis - armed or disarmed we allow servos to move
|
||||
output_armed();
|
||||
}
|
||||
|
||||
//
|
||||
// private methods
|
||||
//
|
||||
|
||||
// reset_swash - free up swash for maximum movements. Used for set-up
|
||||
void AP_MotorsHeli::reset_swash()
|
||||
{
|
||||
@ -334,49 +365,17 @@ void AP_MotorsHeli::reset_swash()
|
||||
_servo_3->radio_min = 1000;
|
||||
_servo_3->radio_max = 2000;
|
||||
|
||||
if( swash_type == AP_MOTORS_HELI_SWASH_CCPM ) { //CCPM Swashplate, perform servo control mixing
|
||||
|
||||
// roll factors
|
||||
_rollFactor[CH_1] = cosf(radians(servo1_pos + 90 - phase_angle));
|
||||
_rollFactor[CH_2] = cosf(radians(servo2_pos + 90 - phase_angle));
|
||||
_rollFactor[CH_3] = cosf(radians(servo3_pos + 90 - phase_angle));
|
||||
|
||||
// pitch factors
|
||||
_pitchFactor[CH_1] = cosf(radians(servo1_pos - phase_angle));
|
||||
_pitchFactor[CH_2] = cosf(radians(servo2_pos - phase_angle));
|
||||
_pitchFactor[CH_3] = cosf(radians(servo3_pos - phase_angle));
|
||||
|
||||
// collective factors
|
||||
_collectiveFactor[CH_1] = 1;
|
||||
_collectiveFactor[CH_2] = 1;
|
||||
_collectiveFactor[CH_3] = 1;
|
||||
|
||||
}else{ //H1 Swashplate, keep servo outputs seperated
|
||||
|
||||
// roll factors
|
||||
_rollFactor[CH_1] = 1;
|
||||
_rollFactor[CH_2] = 0;
|
||||
_rollFactor[CH_3] = 0;
|
||||
|
||||
// pitch factors
|
||||
_pitchFactor[CH_1] = 0;
|
||||
_pitchFactor[CH_2] = 1;
|
||||
_pitchFactor[CH_3] = 0;
|
||||
|
||||
// collective factors
|
||||
_collectiveFactor[CH_1] = 0;
|
||||
_collectiveFactor[CH_2] = 0;
|
||||
_collectiveFactor[CH_3] = 1;
|
||||
}
|
||||
// calculate factors based on swash type and servo position
|
||||
calculate_roll_pitch_collective_factors();
|
||||
|
||||
// set roll, pitch and throttle scaling
|
||||
_roll_scaler = 1.0f;
|
||||
_pitch_scaler = 1.0f;
|
||||
_collective_scalar = ((float)(_rc_throttle->radio_max - _rc_throttle->radio_min))/1000.0f;
|
||||
_stab_throttle_scalar = 1.0f;
|
||||
_collective_scalar_manual = 1.0f;
|
||||
|
||||
// we must be in set-up mode so mark swash as uninitialised
|
||||
_swash_initialised = false;
|
||||
_heliflags.swash_initialised = false;
|
||||
}
|
||||
|
||||
// init_swash - initialise the swash plate
|
||||
@ -389,34 +388,51 @@ void AP_MotorsHeli::init_swash()
|
||||
_servo_3->set_range(0,1000);
|
||||
_servo_4->set_angle(4500);
|
||||
|
||||
// ensure _coll values are reasonable
|
||||
if( collective_min >= collective_max ) {
|
||||
collective_min = 1000;
|
||||
collective_max = 2000;
|
||||
// range check collective min, max and mid
|
||||
if( _collective_min >= _collective_max ) {
|
||||
_collective_min = 1000;
|
||||
_collective_max = 2000;
|
||||
}
|
||||
_collective_mid = constrain_int16(_collective_mid, _collective_min, _collective_max);
|
||||
|
||||
collective_mid = constrain_int16(collective_mid, collective_min, collective_max);
|
||||
// calculate collective mid point as a number from 0 to 1000
|
||||
_collective_mid_pwm = ((float)(_collective_mid-_collective_min))/((float)(_collective_max-_collective_min))*1000.0f;
|
||||
|
||||
// calculate throttle mid point
|
||||
throttle_mid = ((float)(collective_mid-collective_min))/((float)(collective_max-collective_min))*1000.0f;
|
||||
// determine roll, pitch and collective input scaling
|
||||
_roll_scaler = (float)_roll_max/4500.0f;
|
||||
_pitch_scaler = (float)_pitch_max/4500.0f;
|
||||
_collective_scalar = ((float)(_collective_max-_collective_min))/1000.0f;
|
||||
_collective_scalar_manual = ((float)(_manual_collective_max - _manual_collective_min))/100.0f;
|
||||
|
||||
// determine roll, pitch and throttle scaling
|
||||
_roll_scaler = (float)roll_max/4500.0f;
|
||||
_pitch_scaler = (float)pitch_max/4500.0f;
|
||||
_collective_scalar = ((float)(collective_max-collective_min))/1000.0f;
|
||||
_stab_throttle_scalar = ((float)(stab_col_max - stab_col_min))/100.0f;
|
||||
// calculate factors based on swash type and servo position
|
||||
calculate_roll_pitch_collective_factors();
|
||||
|
||||
if( swash_type == AP_MOTORS_HELI_SWASH_CCPM ) { //CCPM Swashplate, perform control mixing
|
||||
// servo min/max values
|
||||
_servo_1->radio_min = 1000;
|
||||
_servo_1->radio_max = 2000;
|
||||
_servo_2->radio_min = 1000;
|
||||
_servo_2->radio_max = 2000;
|
||||
_servo_3->radio_min = 1000;
|
||||
_servo_3->radio_max = 2000;
|
||||
|
||||
// mark swash as initialised
|
||||
_heliflags.swash_initialised = true;
|
||||
}
|
||||
|
||||
// calculate_roll_pitch_collective_factors - calculate factors based on swash type and servo position
|
||||
void AP_MotorsHeli::calculate_roll_pitch_collective_factors()
|
||||
{
|
||||
if (_swash_type == AP_MOTORS_HELI_SWASH_CCPM) { //CCPM Swashplate, perform control mixing
|
||||
|
||||
// roll factors
|
||||
_rollFactor[CH_1] = cosf(radians(servo1_pos + 90 - phase_angle));
|
||||
_rollFactor[CH_2] = cosf(radians(servo2_pos + 90 - phase_angle));
|
||||
_rollFactor[CH_3] = cosf(radians(servo3_pos + 90 - phase_angle));
|
||||
_rollFactor[CH_1] = cosf(radians(_servo1_pos + 90 - _phase_angle));
|
||||
_rollFactor[CH_2] = cosf(radians(_servo2_pos + 90 - _phase_angle));
|
||||
_rollFactor[CH_3] = cosf(radians(_servo3_pos + 90 - _phase_angle));
|
||||
|
||||
// pitch factors
|
||||
_pitchFactor[CH_1] = cosf(radians(servo1_pos - phase_angle));
|
||||
_pitchFactor[CH_2] = cosf(radians(servo2_pos - phase_angle));
|
||||
_pitchFactor[CH_3] = cosf(radians(servo3_pos - phase_angle));
|
||||
_pitchFactor[CH_1] = cosf(radians(_servo1_pos - _phase_angle));
|
||||
_pitchFactor[CH_2] = cosf(radians(_servo2_pos - _phase_angle));
|
||||
_pitchFactor[CH_3] = cosf(radians(_servo3_pos - _phase_angle));
|
||||
|
||||
// collective factors
|
||||
_collectiveFactor[CH_1] = 1;
|
||||
@ -440,17 +456,6 @@ void AP_MotorsHeli::init_swash()
|
||||
_collectiveFactor[CH_2] = 0;
|
||||
_collectiveFactor[CH_3] = 1;
|
||||
}
|
||||
|
||||
// servo min/max values
|
||||
_servo_1->radio_min = 1000;
|
||||
_servo_1->radio_max = 2000;
|
||||
_servo_2->radio_min = 1000;
|
||||
_servo_2->radio_max = 2000;
|
||||
_servo_3->radio_min = 1000;
|
||||
_servo_3->radio_max = 2000;
|
||||
|
||||
// mark swash as initialised
|
||||
_swash_initialised = true;
|
||||
}
|
||||
|
||||
//
|
||||
@ -466,16 +471,16 @@ void AP_MotorsHeli::move_swash(int16_t roll_out, int16_t pitch_out, int16_t coll
|
||||
int16_t yaw_offset = 0;
|
||||
int16_t coll_out_scaled;
|
||||
|
||||
if( servo_manual == 1 ) { // are we in manual servo mode? (i.e. swash set-up mode)?
|
||||
if (_servo_manual == 1) { // are we in manual servo mode? (i.e. swash set-up mode)?
|
||||
// check if we need to free up the swash
|
||||
if( _swash_initialised ) {
|
||||
if (_heliflags.swash_initialised) {
|
||||
reset_swash();
|
||||
}
|
||||
coll_out_scaled = coll_in * _collective_scalar + _rc_throttle->radio_min - 1000;
|
||||
}else{ // regular flight mode
|
||||
|
||||
// check if we need to reinitialise the swash
|
||||
if( !_swash_initialised ) {
|
||||
if (!_heliflags.swash_initialised) {
|
||||
init_swash();
|
||||
}
|
||||
|
||||
@ -485,28 +490,28 @@ void AP_MotorsHeli::move_swash(int16_t roll_out, int16_t pitch_out, int16_t coll
|
||||
// coming into this equation at 4500 or less, and based on the original assumption of the
|
||||
// total _servo_x.servo_out range being -4500 to 4500.
|
||||
roll_out = roll_out * _roll_scaler;
|
||||
roll_out = constrain_int16(roll_out, (int16_t)-roll_max, (int16_t)roll_max);
|
||||
roll_out = constrain_int16(roll_out, (int16_t)-_roll_max, (int16_t)_roll_max);
|
||||
|
||||
pitch_out = pitch_out * _pitch_scaler;
|
||||
pitch_out = constrain_int16(pitch_out, (int16_t)-pitch_max, (int16_t)pitch_max);
|
||||
pitch_out = constrain_int16(pitch_out, (int16_t)-_pitch_max, (int16_t)_pitch_max);
|
||||
|
||||
// scale collective pitch
|
||||
coll_out = constrain_int16(coll_in, 0, 1000);
|
||||
if (stab_throttle){
|
||||
coll_out = coll_out * _stab_throttle_scalar + stab_col_min*10;
|
||||
_collective_out = constrain_int16(coll_in, 0, 1000);
|
||||
if (_heliflags.manual_collective){
|
||||
_collective_out = _collective_out * _collective_scalar_manual + _manual_collective_min*10;
|
||||
}
|
||||
coll_out_scaled = coll_out * _collective_scalar + collective_min - 1000;
|
||||
coll_out_scaled = _collective_out * _collective_scalar + _collective_min - 1000;
|
||||
|
||||
// rudder feed forward based on collective
|
||||
if( !ext_gyro_enabled ) {
|
||||
yaw_offset = collective_yaw_effect * abs(coll_out_scaled - throttle_mid);
|
||||
if (!_ext_gyro_enabled) {
|
||||
yaw_offset = _collective_yaw_effect * abs(coll_out_scaled - _collective_mid_pwm);
|
||||
}
|
||||
}
|
||||
|
||||
// swashplate servos
|
||||
_servo_1->servo_out = (_rollFactor[CH_1] * roll_out + _pitchFactor[CH_1] * pitch_out)/10 + _collectiveFactor[CH_1] * coll_out_scaled + (_servo_1->radio_trim-1500);
|
||||
_servo_2->servo_out = (_rollFactor[CH_2] * roll_out + _pitchFactor[CH_2] * pitch_out)/10 + _collectiveFactor[CH_2] * coll_out_scaled + (_servo_2->radio_trim-1500);
|
||||
if( swash_type == AP_MOTORS_HELI_SWASH_H1 ) {
|
||||
if (_swash_type == AP_MOTORS_HELI_SWASH_H1) {
|
||||
_servo_1->servo_out += 500;
|
||||
_servo_2->servo_out += 500;
|
||||
}
|
||||
@ -532,8 +537,8 @@ void AP_MotorsHeli::move_swash(int16_t roll_out, int16_t pitch_out, int16_t coll
|
||||
motor_out[AP_MOTORS_MOT_4] = _servo_4->radio_out;
|
||||
|
||||
// output gyro value
|
||||
if( ext_gyro_enabled ) {
|
||||
hal.rcout->write(AP_MOTORS_HELI_EXT_GYRO, ext_gyro_gain);
|
||||
if (_ext_gyro_enabled) {
|
||||
hal.rcout->write(AP_MOTORS_HELI_EXT_GYRO, _ext_gyro_gain);
|
||||
}
|
||||
}
|
||||
|
||||
@ -542,61 +547,60 @@ static long map(long x, long in_min, long in_max, long out_min, long out_max)
|
||||
return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
|
||||
}
|
||||
|
||||
|
||||
void AP_MotorsHeli::rsc_control() {
|
||||
|
||||
if (armed() && (rsc_ramp >= rsc_ramp_up_rate)){ // rsc_ramp will never increase if rsc_mode = 0
|
||||
if (motor_runup_timer < AP_MOTORS_HELI_MOTOR_RUNUP_TIME){ // therefore motor_runup_complete can never be true
|
||||
motor_runup_timer++;
|
||||
// rsc_control - update value to send to main rotor's ESC
|
||||
void AP_MotorsHeli::rsc_control()
|
||||
{
|
||||
if (armed() && (_rsc_ramp >= _rsc_ramp_up_rate)){ // rsc_ramp will never increase if rsc_mode = 0
|
||||
if (_motor_runup_timer < AP_MOTORS_HELI_MOTOR_RUNUP_TIME){ // therefore motor_runup_complete can never be true
|
||||
_motor_runup_timer++;
|
||||
} else {
|
||||
motor_runup_complete = true;
|
||||
_heliflags.motor_runup_complete = true;
|
||||
}
|
||||
} else {
|
||||
motor_runup_complete = false; // motor_runup_complete will go to false if we
|
||||
motor_runup_timer = 0; // disarm or wind down the motor
|
||||
_heliflags.motor_runup_complete = false; // motor_runup_complete will go to false if we
|
||||
_motor_runup_timer = 0; // disarm or wind down the motor
|
||||
}
|
||||
|
||||
|
||||
switch ( rsc_mode ) {
|
||||
switch (_rsc_mode) {
|
||||
|
||||
case AP_MOTORS_HELI_RSC_MODE_CH8_PASSTHROUGH:
|
||||
if( armed() && (_rc_8->radio_in > (_rc_8->radio_min + 10))) {
|
||||
if (rsc_ramp < rsc_ramp_up_rate) {
|
||||
rsc_ramp++;
|
||||
rsc_output = map(rsc_ramp, 0, rsc_ramp_up_rate, _rc_8->radio_min, _rc_8->radio_in);
|
||||
if (_rsc_ramp < _rsc_ramp_up_rate) {
|
||||
_rsc_ramp++;
|
||||
_rsc_output = map(_rsc_ramp, 0, _rsc_ramp_up_rate, _rc_8->radio_min, _rc_8->radio_in);
|
||||
} else {
|
||||
rsc_output = _rc_8->radio_in;
|
||||
_rsc_output = _rc_8->radio_in;
|
||||
}
|
||||
} else {
|
||||
rsc_ramp--; //Return RSC Ramp to 0 slowly, allowing for "warm restart"
|
||||
if (rsc_ramp < 0) {
|
||||
rsc_ramp = 0;
|
||||
_rsc_ramp--; //Return RSC Ramp to 0 slowly, allowing for "warm restart"
|
||||
if (_rsc_ramp < 0) {
|
||||
_rsc_ramp = 0;
|
||||
}
|
||||
rsc_output = _rc_8->radio_min;
|
||||
_rsc_output = _rc_8->radio_min;
|
||||
}
|
||||
hal.rcout->write(AP_MOTORS_HELI_EXT_RSC, rsc_output);
|
||||
hal.rcout->write(AP_MOTORS_HELI_EXT_RSC, _rsc_output);
|
||||
break;
|
||||
|
||||
case AP_MOTORS_HELI_RSC_MODE_EXT_GOVERNOR:
|
||||
|
||||
if( armed() && _rc_8->control_in > 100) {
|
||||
if (rsc_ramp < rsc_ramp_up_rate) {
|
||||
rsc_ramp++;
|
||||
rsc_output = map(rsc_ramp, 0, rsc_ramp_up_rate, 1000, ext_gov_setpoint);
|
||||
if (armed() && _rc_8->control_in > 100) {
|
||||
if (_rsc_ramp < _rsc_ramp_up_rate) {
|
||||
_rsc_ramp++;
|
||||
_rsc_output = map(_rsc_ramp, 0, _rsc_ramp_up_rate, 1000, _ext_gov_setpoint);
|
||||
} else {
|
||||
rsc_output = ext_gov_setpoint;
|
||||
_rsc_output = _ext_gov_setpoint;
|
||||
}
|
||||
} else {
|
||||
rsc_ramp--; //Return RSC Ramp to 0 slowly, allowing for "warm restart"
|
||||
if (rsc_ramp < 0) {
|
||||
rsc_ramp = 0;
|
||||
_rsc_ramp--; //Return RSC Ramp to 0 slowly, allowing for "warm restart"
|
||||
if (_rsc_ramp < 0) {
|
||||
_rsc_ramp = 0;
|
||||
}
|
||||
rsc_output = 1000; //Just to be sure RSC output is 0
|
||||
_rsc_output = 1000; //Just to be sure RSC output is 0
|
||||
}
|
||||
hal.rcout->write(AP_MOTORS_HELI_EXT_RSC, rsc_output);
|
||||
hal.rcout->write(AP_MOTORS_HELI_EXT_RSC, _rsc_output);
|
||||
break;
|
||||
|
||||
default:
|
||||
break;
|
||||
}
|
||||
};
|
||||
}
|
||||
|
@ -41,15 +41,16 @@
|
||||
#define AP_MOTORS_HELI_COLLECTIVE_MID 1500
|
||||
|
||||
// swash min and max position (expressed as percentage) while in stabilize mode
|
||||
#define AP_MOTORS_HELI_STAB_COL_MIN 0
|
||||
#define AP_MOTORS_HELI_STAB_COL_MAX 100
|
||||
#define AP_MOTORS_HELI_MANUAL_COLLECTIVE_MIN 0
|
||||
#define AP_MOTORS_HELI_MANUAL_COLLECTIVE_MAX 100
|
||||
|
||||
// default external gyro gain (ch7 out)
|
||||
#define AP_MOTORS_HELI_EXT_GYRO_GAIN 1350
|
||||
|
||||
// main rotor control types (ch8 out)
|
||||
#define AP_MOTORS_HELI_RSC_MODE_CH8_PASSTHROUGH 1
|
||||
#define AP_MOTORS_HELI_RSC_MODE_EXT_GOVERNOR 2
|
||||
// main rotor speed control types (ch8 out)
|
||||
#define AP_MOTORS_HELI_RSC_MODE_NONE 0 // main rotor ESC is directly connected to receiver
|
||||
#define AP_MOTORS_HELI_RSC_MODE_CH8_PASSTHROUGH 1 // main rotor ESC is connected to RC8 (out) but pilot still directly controls speed with a passthrough from CH8 (in)
|
||||
#define AP_MOTORS_HELI_RSC_MODE_EXT_GOVERNOR 2 // main rotor ESC is connected to RC8 and controlled by arducopter
|
||||
|
||||
// default main rotor governor set-point (ch8 out)
|
||||
#define AP_MOTORS_HELI_EXT_GOVERNOR_SETPOINT 1500
|
||||
@ -86,54 +87,25 @@ public:
|
||||
_servo_3(swash_servo_3),
|
||||
_servo_4(yaw_servo),
|
||||
_rc_8(rc_8),
|
||||
throttle_mid(0),
|
||||
_roll_scaler(1),
|
||||
_pitch_scaler(1),
|
||||
_collective_scalar(1),
|
||||
_stab_throttle_scalar(1),
|
||||
_swash_initialised(false),
|
||||
stab_throttle(false),
|
||||
motor_runup_complete(false)
|
||||
_collective_scalar_manual(1),
|
||||
_collective_out(0),
|
||||
_collective_mid_pwm(0),
|
||||
_rsc_output(0),
|
||||
_rsc_ramp(0),
|
||||
_motor_runup_timer(0)
|
||||
{
|
||||
AP_Param::setup_object_defaults(this, var_info);
|
||||
|
||||
// initialise flags
|
||||
_heliflags.swash_initialised = 0;
|
||||
_heliflags.manual_collective = 0;
|
||||
_heliflags.landing_collective = 0;
|
||||
_heliflags.motor_runup_complete = 0;
|
||||
};
|
||||
|
||||
// external objects we depend upon
|
||||
RC_Channel *_servo_1;
|
||||
RC_Channel *_servo_2;
|
||||
RC_Channel *_servo_3;
|
||||
RC_Channel *_servo_4;
|
||||
RC_Channel *_rc_8;
|
||||
|
||||
// parameters
|
||||
AP_Int16 servo1_pos; // Angular location of swash servo #1
|
||||
AP_Int16 servo2_pos; // Angular location of swash servo #2
|
||||
AP_Int16 servo3_pos; // Angular location of swash servo #3
|
||||
AP_Int16 roll_max; // Maximum roll angle of the swash plate in centi-degrees
|
||||
AP_Int16 pitch_max; // Maximum pitch angle of the swash plate in centi-degrees
|
||||
AP_Int16 collective_min; // Lowest possible servo position for the swashplate
|
||||
AP_Int16 collective_max; // Highest possible servo position for the swashplate
|
||||
AP_Int16 collective_mid; // Swash servo position corresponding to zero collective pitch (or zero lift for Assymetrical blades)
|
||||
AP_Int16 ext_gyro_enabled; // Enabled/Disable an external rudder gyro connected to channel 7. With no external gyro a more complex yaw controller is used
|
||||
AP_Int8 swash_type; // Swash Type Setting - either 3-servo CCPM or H1 Mechanical Mixing
|
||||
AP_Int16 ext_gyro_gain; // PWM sent to the external gyro on Ch7
|
||||
AP_Int8 servo_manual; // Pass radio inputs directly to servos during set-up through mission planner
|
||||
AP_Int16 phase_angle; // Phase angle correction for rotor head. If pitching the swash forward induces a roll, this can be correct the problem
|
||||
AP_Int16 collective_yaw_effect; // Feed-forward compensation to automatically add rudder input when collective pitch is increased. Can be positive or negative depending on mechanics.
|
||||
AP_Int16 ext_gov_setpoint; // PWM passed to the external motor governor when external governor is enabledv
|
||||
AP_Int8 rsc_mode; // Sets which main rotor ESC control mode is active
|
||||
AP_Int16 rsc_ramp_up_rate; // The time in 100th seconds the RSC takes to ramp up to speed
|
||||
AP_Int8 flybar_mode; // Flybar present or not. Affects attitude controller used during ACRO flight mode
|
||||
AP_Int8 stab_col_min; // Minimum collective position while flying in Stabilize Mode
|
||||
AP_Int8 stab_col_max; // Maximum collective position while flying in Stabilize Mode
|
||||
|
||||
// internal variables
|
||||
int16_t throttle_mid; // throttle mid point in pwm form (i.e. 0 ~ 1000)
|
||||
|
||||
bool stab_throttle; // true if we are in Stabilize Mode for reduced Swash Range
|
||||
bool motor_runup_complete; // true if the rotors have had enough time to wind up
|
||||
int16_t coll_out; // returns the actual collective in use to the main code
|
||||
|
||||
// init
|
||||
void Init();
|
||||
|
||||
@ -144,46 +116,124 @@ public:
|
||||
// enable - starts allowing signals to be sent to motors
|
||||
void enable();
|
||||
|
||||
// motor test
|
||||
void output_test();
|
||||
|
||||
// output_min - sends minimum values out to the motors
|
||||
void output_min();
|
||||
|
||||
// init_swash - initialise the swash plate
|
||||
void init_swash();
|
||||
// output_test - wiggle servos in order to show connections are correct
|
||||
void output_test();
|
||||
|
||||
// output - sends commands to the motors
|
||||
void output_armed();
|
||||
//
|
||||
// heli specific methods
|
||||
//
|
||||
|
||||
// allow_arming - returns true if main rotor is spinning and it is ok to arm
|
||||
bool allow_arming();
|
||||
|
||||
// ext_gyro_enabled - returns true if we have an external gyro for yaw control
|
||||
bool ext_gyro_enabled() { return _ext_gyro_enabled; }
|
||||
|
||||
// ext_gyro_gain - gets and sets external gyro gain output on ch7
|
||||
int16_t ext_gyro_gain() { return _ext_gyro_gain; }
|
||||
void ext_gyro_gain(int16_t gain) { _ext_gyro_gain = gain; }
|
||||
|
||||
// has_flybar - returns true if we have a mechical flybar
|
||||
bool has_flybar() { return _flybar_mode; }
|
||||
|
||||
// get_collective_mid - returns collective mid position as a number from 0 ~ 1000
|
||||
int16_t get_collective_mid() { return _collective_mid; }
|
||||
|
||||
// get_collective_out - returns collective position from last output as a number from 0 ~ 1000
|
||||
int16_t get_collective_out() { return _collective_out; }
|
||||
|
||||
// set_collective_for_manual_control - limits collective to reduced range for stabilize (i.e. manual) flying
|
||||
void set_collective_for_manual_control(bool true_false) { _heliflags.manual_collective = true_false; }
|
||||
|
||||
// get min/max collective when controlled manually as a number from 0 ~ 1000 (note that parameter is stored as percentage)
|
||||
int16_t get_manual_collective_min() { return _manual_collective_min*10; }
|
||||
int16_t get_manual_collective_max() { return _manual_collective_max*10; }
|
||||
|
||||
// set_collective_for_landing - limits collective from going too low if we know we are landed
|
||||
void set_collective_for_landing(bool landing) { _heliflags.landing_collective = landing; }
|
||||
|
||||
// return true if the main rotor is up to speed
|
||||
bool motor_runup_complete() { return _heliflags.motor_runup_complete; }
|
||||
|
||||
// var_info for holding Parameter information
|
||||
static const struct AP_Param::GroupInfo var_info[];
|
||||
|
||||
protected:
|
||||
|
||||
// output - sends commands to the motors
|
||||
void output_armed();
|
||||
void output_disarmed();
|
||||
|
||||
private:
|
||||
|
||||
// heli_move_swash - moves swash plate to attitude of parameters passed in
|
||||
void move_swash(int16_t roll_out, int16_t pitch_out, int16_t coll_in, int16_t yaw_out);
|
||||
|
||||
// reset_swash - free up swash for maximum movements. Used for set-up
|
||||
void reset_swash();
|
||||
|
||||
void output_disarmed();
|
||||
// init_swash - initialise the swash plate
|
||||
void init_swash();
|
||||
|
||||
// calculate_roll_pitch_collective_factors - calculate factors based on swash type and servo position
|
||||
void calculate_roll_pitch_collective_factors();
|
||||
|
||||
// rsc_control - update value to send to main rotor's ESC
|
||||
void rsc_control();
|
||||
|
||||
// external objects we depend upon
|
||||
RC_Channel *_servo_1;
|
||||
RC_Channel *_servo_2;
|
||||
RC_Channel *_servo_3;
|
||||
RC_Channel *_servo_4;
|
||||
RC_Channel *_rc_8;
|
||||
|
||||
// flags bitmask
|
||||
struct heliflags_type {
|
||||
uint8_t swash_initialised : 1; // true if swash has been initialised
|
||||
uint8_t manual_collective : 1; // true if pilot is manually controlling the collective. If true then we reduce the swash range
|
||||
uint8_t landing_collective : 1; // true if collective is setup for landing which has much higher minimum
|
||||
uint8_t motor_runup_complete : 1; // true if the rotors have had enough time to wind up
|
||||
} _heliflags;
|
||||
|
||||
// parameters
|
||||
AP_Int16 _servo1_pos; // Angular location of swash servo #1
|
||||
AP_Int16 _servo2_pos; // Angular location of swash servo #2
|
||||
AP_Int16 _servo3_pos; // Angular location of swash servo #3
|
||||
AP_Int16 _roll_max; // Maximum roll angle of the swash plate in centi-degrees
|
||||
AP_Int16 _pitch_max; // Maximum pitch angle of the swash plate in centi-degrees
|
||||
AP_Int16 _collective_min; // Lowest possible servo position for the swashplate
|
||||
AP_Int16 _collective_max; // Highest possible servo position for the swashplate
|
||||
AP_Int16 _collective_mid; // Swash servo position corresponding to zero collective pitch (or zero lift for Assymetrical blades)
|
||||
AP_Int16 _ext_gyro_enabled; // Enabled/Disable an external rudder gyro connected to channel 7. With no external gyro a more complex yaw controller is used
|
||||
AP_Int8 _swash_type; // Swash Type Setting - either 3-servo CCPM or H1 Mechanical Mixing
|
||||
AP_Int16 _ext_gyro_gain; // PWM sent to the external gyro on Ch7
|
||||
AP_Int8 _servo_manual; // Pass radio inputs directly to servos during set-up through mission planner
|
||||
AP_Int16 _phase_angle; // Phase angle correction for rotor head. If pitching the swash forward induces a roll, this can be correct the problem
|
||||
AP_Int16 _collective_yaw_effect; // Feed-forward compensation to automatically add rudder input when collective pitch is increased. Can be positive or negative depending on mechanics.
|
||||
AP_Int16 _ext_gov_setpoint; // PWM passed to the external motor governor when external governor is enabledv
|
||||
AP_Int8 _rsc_mode; // Sets which main rotor ESC control mode is active
|
||||
AP_Int16 _rsc_ramp_up_rate; // The time in 100th seconds the RSC takes to ramp up to speed
|
||||
AP_Int8 _flybar_mode; // Flybar present or not. Affects attitude controller used during ACRO flight mode
|
||||
AP_Int8 _manual_collective_min; // Minimum collective position while pilot directly controls the collective
|
||||
AP_Int8 _manual_collective_max; // Maximum collective position while pilot directly controls the collective
|
||||
|
||||
// internal variables
|
||||
float _rollFactor[AP_MOTORS_HELI_NUM_SWASHPLATE_SERVOS];
|
||||
float _pitchFactor[AP_MOTORS_HELI_NUM_SWASHPLATE_SERVOS];
|
||||
float _collectiveFactor[AP_MOTORS_HELI_NUM_SWASHPLATE_SERVOS];
|
||||
|
||||
// internally used variables
|
||||
float _roll_scaler; // scaler to convert roll input from radio (i.e. -4500 ~ 4500) to max roll range
|
||||
float _pitch_scaler; // scaler to convert pitch input from radio (i.e. -4500 ~ 4500) to max pitch range
|
||||
float _collective_scalar; // throttle scalar to convert pwm form (i.e. 0 ~ 1000) passed in to actual servo range (i.e 1250~1750 would be 500)
|
||||
float _stab_throttle_scalar; // throttle scalar to reduce the range of the collective movement in stabilize mode
|
||||
bool _swash_initialised; // true if swash has been initialised
|
||||
int16_t rsc_output; // final output to the external motor governor 1000-2000
|
||||
int16_t rsc_ramp; // current state of ramping
|
||||
int16_t motor_runup_timer; // timer to determine if motor has run up fully
|
||||
float _collective_scalar; // collective scalar to convert pwm form (i.e. 0 ~ 1000) passed in to actual servo range (i.e 1250~1750 would be 500)
|
||||
float _collective_scalar_manual; // collective scalar to reduce the range of the collective movement while collective is being controlled manually (i.e. directly by the pilot)
|
||||
int16_t _collective_out; // actual collective pitch value. Required by the main code for calculating cruise throttle
|
||||
int16_t _collective_mid_pwm; // collective mid parameter value converted to pwm form (i.e. 0 ~ 1000)
|
||||
int16_t _rsc_output; // final output to the external motor governor 1000-2000
|
||||
int16_t _rsc_ramp; // current state of ramping
|
||||
int16_t _motor_runup_timer; // timer to determine if motor has run up fully
|
||||
};
|
||||
|
||||
#endif // AP_MOTORSHELI
|
||||
|
Loading…
Reference in New Issue
Block a user