TradHeli: make parameters and variables private

add accessors for variables and params required in main code
replace tabs with spaces
This commit is contained in:
Randy Mackay 2013-11-04 20:53:27 +09:00
parent 72597cc5bd
commit 13a412ee21
2 changed files with 288 additions and 234 deletions

View File

@ -35,7 +35,7 @@ const AP_Param::GroupInfo AP_MotorsHeli::var_info[] PROGMEM = {
// @Units: Degrees
// @User: Standard
// @Increment: 1
AP_GROUPINFO("SV1_POS", 1, AP_MotorsHeli, servo1_pos, AP_MOTORS_HELI_SERVO1_POS),
AP_GROUPINFO("SV1_POS", 1, AP_MotorsHeli, _servo1_pos, AP_MOTORS_HELI_SERVO1_POS),
// @Param: SV2_POS
// @DisplayName: Servo 2 Position
@ -44,7 +44,7 @@ const AP_Param::GroupInfo AP_MotorsHeli::var_info[] PROGMEM = {
// @Units: Degrees
// @User: Standard
// @Increment: 1
AP_GROUPINFO("SV2_POS", 2, AP_MotorsHeli, servo2_pos, AP_MOTORS_HELI_SERVO2_POS),
AP_GROUPINFO("SV2_POS", 2, AP_MotorsHeli, _servo2_pos, AP_MOTORS_HELI_SERVO2_POS),
// @Param: SV3_POS
// @DisplayName: Servo 3 Position
@ -53,7 +53,7 @@ const AP_Param::GroupInfo AP_MotorsHeli::var_info[] PROGMEM = {
// @Units: Degrees
// @User: Standard
// @Increment: 1
AP_GROUPINFO("SV3_POS", 3, AP_MotorsHeli, servo3_pos, AP_MOTORS_HELI_SERVO3_POS),
AP_GROUPINFO("SV3_POS", 3, AP_MotorsHeli, _servo3_pos, AP_MOTORS_HELI_SERVO3_POS),
// @Param: ROL_MAX
// @DisplayName: Swash Roll Angle Max
@ -62,7 +62,7 @@ const AP_Param::GroupInfo AP_MotorsHeli::var_info[] PROGMEM = {
// @Units: Centi-Degrees
// @Increment: 100
// @User: Advanced
AP_GROUPINFO("ROL_MAX", 4, AP_MotorsHeli, roll_max, AP_MOTORS_HELI_SWASH_ROLL_MAX),
AP_GROUPINFO("ROL_MAX", 4, AP_MotorsHeli, _roll_max, AP_MOTORS_HELI_SWASH_ROLL_MAX),
// @Param: PIT_MAX
// @DisplayName: Swash Pitch Angle Max
@ -71,7 +71,7 @@ const AP_Param::GroupInfo AP_MotorsHeli::var_info[] PROGMEM = {
// @Units: Centi-Degrees
// @Increment: 100
// @User: Advanced
AP_GROUPINFO("PIT_MAX", 5, AP_MotorsHeli, pitch_max, AP_MOTORS_HELI_SWASH_PITCH_MAX),
AP_GROUPINFO("PIT_MAX", 5, AP_MotorsHeli, _pitch_max, AP_MOTORS_HELI_SWASH_PITCH_MAX),
// @Param: COL_MIN
// @DisplayName: Collective Pitch Minimum
@ -80,7 +80,7 @@ const AP_Param::GroupInfo AP_MotorsHeli::var_info[] PROGMEM = {
// @Units: PWM
// @Increment: 1
// @User: Standard
AP_GROUPINFO("COL_MIN", 6, AP_MotorsHeli, collective_min, AP_MOTORS_HELI_COLLECTIVE_MIN),
AP_GROUPINFO("COL_MIN", 6, AP_MotorsHeli, _collective_min, AP_MOTORS_HELI_COLLECTIVE_MIN),
// @Param: COL_MAX
// @DisplayName: Collective Pitch Maximum
@ -89,7 +89,7 @@ const AP_Param::GroupInfo AP_MotorsHeli::var_info[] PROGMEM = {
// @Units: PWM
// @Increment: 1
// @User: Standard
AP_GROUPINFO("COL_MAX", 7, AP_MotorsHeli, collective_max, AP_MOTORS_HELI_COLLECTIVE_MAX),
AP_GROUPINFO("COL_MAX", 7, AP_MotorsHeli, _collective_max, AP_MOTORS_HELI_COLLECTIVE_MAX),
// @Param: COL_MID
// @DisplayName: Collective Pitch Mid-Point
@ -98,21 +98,21 @@ const AP_Param::GroupInfo AP_MotorsHeli::var_info[] PROGMEM = {
// @Units: PWM
// @Increment: 1
// @User: Standard
AP_GROUPINFO("COL_MID", 8, AP_MotorsHeli, collective_mid, AP_MOTORS_HELI_COLLECTIVE_MID),
AP_GROUPINFO("COL_MID", 8, AP_MotorsHeli, _collective_mid, AP_MOTORS_HELI_COLLECTIVE_MID),
// @Param: GYR_ENABLE
// @DisplayName: External Gyro Enabled
// @Description: Enabled/Disable an external rudder gyro connected to channel 7. With no external gyro a more complex yaw controller is used
// @Values: 0:Disabled,1:Enabled
// @User: Standard
AP_GROUPINFO("GYR_ENABLE", 9, AP_MotorsHeli, ext_gyro_enabled, 0),
AP_GROUPINFO("GYR_ENABLE",9, AP_MotorsHeli, _ext_gyro_enabled, 0),
// @Param: SWASH_TYPE
// @DisplayName: Swash Type
// @Description: Swash Type Setting - either 3-servo CCPM or H1 Mechanical Mixing
// @Values: 0:3-Servo CCPM, 1:H1 Mechanical Mixing
// @User: Standard
AP_GROUPINFO("SWASH_TYPE", 10, AP_MotorsHeli, swash_type, AP_MOTORS_HELI_SWASH_CCPM),
AP_GROUPINFO("SWASH_TYPE",10, AP_MotorsHeli, _swash_type, AP_MOTORS_HELI_SWASH_CCPM),
// @Param: GYR_GAIN
// @DisplayName: External Gyro Gain
@ -121,14 +121,14 @@ const AP_Param::GroupInfo AP_MotorsHeli::var_info[] PROGMEM = {
// @Units: PWM
// @Increment: 10
// @User: Standard
AP_GROUPINFO("GYR_GAIN", 11, AP_MotorsHeli, ext_gyro_gain, AP_MOTORS_HELI_EXT_GYRO_GAIN),
AP_GROUPINFO("GYR_GAIN",11, AP_MotorsHeli, _ext_gyro_gain, AP_MOTORS_HELI_EXT_GYRO_GAIN),
// @Param: SV_MAN
// @DisplayName: Manual Servo Mode
// @Description: Pass radio inputs directly to servos for set-up. Do not set this manually!
// @Values: 0:Disabled,1:Enabled
// @User: Standard
AP_GROUPINFO("SV_MAN", 12, AP_MotorsHeli, servo_manual, 0),
AP_GROUPINFO("SV_MAN", 12, AP_MotorsHeli, _servo_manual, 0),
// @Param: PHANG
// @DisplayName: Swashplate Phase Angle Compensation
@ -137,13 +137,13 @@ const AP_Param::GroupInfo AP_MotorsHeli::var_info[] PROGMEM = {
// @Units: Degrees
// @User: Advanced
// @Increment: 1
AP_GROUPINFO("PHANG", 13, AP_MotorsHeli, phase_angle, 0),
AP_GROUPINFO("PHANG", 13, AP_MotorsHeli, _phase_angle, 0),
// @Param: COLYAW
// @DisplayName: Collective-Yaw Mixing
// @Description: Feed-forward compensation to automatically add rudder input when collective pitch is increased. Can be positive or negative depending on mechanics.
// @Range: -10 10
AP_GROUPINFO("COLYAW", 14, AP_MotorsHeli, collective_yaw_effect, 0),
AP_GROUPINFO("COLYAW", 14, AP_MotorsHeli, _collective_yaw_effect, 0),
// @Param: GOV_SETPOINT
// @DisplayName: External Motor Governor Setpoint
@ -152,14 +152,14 @@ const AP_Param::GroupInfo AP_MotorsHeli::var_info[] PROGMEM = {
// @Units: PWM
// @Increment: 10
// @User: Standard
AP_GROUPINFO("GOV_SETPOINT", 15, AP_MotorsHeli, ext_gov_setpoint, AP_MOTORS_HELI_EXT_GOVERNOR_SETPOINT),
AP_GROUPINFO("GOV_SETPOINT", 15, AP_MotorsHeli, _ext_gov_setpoint, AP_MOTORS_HELI_EXT_GOVERNOR_SETPOINT),
// @Param: RSC_MODE
// @DisplayName: Rotor Speed Control Mode
// @Description: Which main rotor ESC control mode is active
// @Values: 1:Ch8 passthrough, 2:External Governor
// @Values: 0:None, 1:Ch8 passthrough, 2:External Governor
// @User: Standard
AP_GROUPINFO("RSC_MODE", 16, AP_MotorsHeli, rsc_mode, AP_MOTORS_HELI_RSC_MODE_CH8_PASSTHROUGH),
AP_GROUPINFO("RSC_MODE", 16, AP_MotorsHeli, _rsc_mode, AP_MOTORS_HELI_RSC_MODE_CH8_PASSTHROUGH),
// @Param: RSC_RATE
// @DisplayName: RSC Ramp Rate
@ -167,41 +167,51 @@ const AP_Param::GroupInfo AP_MotorsHeli::var_info[] PROGMEM = {
// @Range: 0 6000
// @Units: 100ths of Seconds
// @User: Standard
AP_GROUPINFO("RSC_RATE", 17, AP_MotorsHeli, rsc_ramp_up_rate, AP_MOTORS_HELI_RSC_RATE),
AP_GROUPINFO("RSC_RATE", 17, AP_MotorsHeli, _rsc_ramp_up_rate, AP_MOTORS_HELI_RSC_RATE),
// @Param: FLYBAR_MODE
// @DisplayName: Flybar Mode Selector
// @Description: Flybar present or not. Affects attitude controller used during ACRO flight mode
// @Range: 0:NoFlybar 1:Flybar
// @User: Standard
AP_GROUPINFO("FLYBAR_MODE", 18, AP_MotorsHeli, flybar_mode, AP_MOTORS_HELI_NOFLYBAR),
AP_GROUPINFO("FLYBAR_MODE", 18, AP_MotorsHeli, _flybar_mode, AP_MOTORS_HELI_NOFLYBAR),
// @Param: STAB_COL_MIN
// @DisplayName: Stabilize Throttle Minimum
// @Description: Minimum collective position while flying in Stabilize Mode
// @Description: Minimum collective position while pilot directly controls collective
// @Range: 0 50
// @Units: Percent
// @Increment: 1
// @User: Standard
AP_GROUPINFO("STAB_COL_MIN", 19, AP_MotorsHeli, stab_col_min, AP_MOTORS_HELI_STAB_COL_MIN),
AP_GROUPINFO("STAB_COL_MIN", 19, AP_MotorsHeli, _manual_collective_min, AP_MOTORS_HELI_MANUAL_COLLECTIVE_MIN),
// @Param: STAB_COL_MAX
// @DisplayName: Stabilize Throttle Maximum
// @Description: Maximum collective position while flying in Stabilize Mode
// @Description: Maximum collective position while pilot directly controls collective
// @Range: 50 100
// @Units: Percent
// @Increment: 1
// @User: Standard
AP_GROUPINFO("STAB_COL_MAX", 20, AP_MotorsHeli, stab_col_max, AP_MOTORS_HELI_STAB_COL_MAX),
AP_GROUPINFO("STAB_COL_MAX", 20, AP_MotorsHeli, _manual_collective_max, AP_MOTORS_HELI_MANUAL_COLLECTIVE_MAX),
AP_GROUPEND
};
//
// public methods
//
// init
void AP_MotorsHeli::Init()
{
// set update rate
set_update_rate(_speed_hz);
// ensure inputs are not passed through to servos
_servo_manual = 0;
// initialise swash plate
init_swash();
}
// set update rate to motors - a value in hertz
@ -238,36 +248,8 @@ void AP_MotorsHeli::output_min()
move_swash(0,0,500,0);
}
// output_armed - sends commands to the motors
void AP_MotorsHeli::output_armed()
{
// if manual override (i.e. when setting up swash), pass pilot commands straight through to swash
if( servo_manual == 1 ) {
_rc_roll->servo_out = _rc_roll->control_in;
_rc_pitch->servo_out = _rc_pitch->control_in;
_rc_throttle->servo_out = _rc_throttle->control_in;
_rc_yaw->servo_out = _rc_yaw->control_in;
}
//static int counter = 0;
_rc_roll->calc_pwm();
_rc_pitch->calc_pwm();
_rc_throttle->calc_pwm();
_rc_yaw->calc_pwm();
move_swash( _rc_roll->servo_out, _rc_pitch->servo_out, _rc_throttle->servo_out, _rc_yaw->servo_out );
rsc_control();
}
// output_disarmed - sends commands to the motors
void AP_MotorsHeli::output_disarmed()
{
// for helis - armed or disarmed we allow servos to move
output_armed();
}
// output_disarmed - sends commands to the motors
// output_test - wiggle servos in order to show connections are correct
void AP_MotorsHeli::output_test()
{
int16_t i;
@ -305,8 +287,8 @@ void AP_MotorsHeli::output_test()
}
// external gyro
if( ext_gyro_enabled ) {
hal.rcout->write(AP_MOTORS_HELI_EXT_GYRO, ext_gyro_gain);
if (_ext_gyro_enabled) {
hal.rcout->write(AP_MOTORS_HELI_EXT_GYRO, _ext_gyro_gain);
}
// servo 4
@ -323,6 +305,55 @@ void AP_MotorsHeli::output_test()
output_min();
}
// allow_arming - returns true if main rotor is spinning and it is ok to arm
bool AP_MotorsHeli::allow_arming()
{
// ensure main rotor has started
if (_rsc_mode != AP_MOTORS_HELI_RSC_MODE_NONE && _rc_8->control_in >= 10) {
return false;
}
// all other cases it is ok to arm
return true;
}
//
// protected methods
//
// output_armed - sends commands to the motors
void AP_MotorsHeli::output_armed()
{
// if manual override (i.e. when setting up swash), pass pilot commands straight through to swash
if (_servo_manual == 1) {
_rc_roll->servo_out = _rc_roll->control_in;
_rc_pitch->servo_out = _rc_pitch->control_in;
_rc_throttle->servo_out = _rc_throttle->control_in;
_rc_yaw->servo_out = _rc_yaw->control_in;
}
//static int counter = 0;
_rc_roll->calc_pwm();
_rc_pitch->calc_pwm();
_rc_throttle->calc_pwm();
_rc_yaw->calc_pwm();
move_swash( _rc_roll->servo_out, _rc_pitch->servo_out, _rc_throttle->servo_out, _rc_yaw->servo_out );
rsc_control();
}
// output_disarmed - sends commands to the motors
void AP_MotorsHeli::output_disarmed()
{
// for helis - armed or disarmed we allow servos to move
output_armed();
}
//
// private methods
//
// reset_swash - free up swash for maximum movements. Used for set-up
void AP_MotorsHeli::reset_swash()
{
@ -334,49 +365,17 @@ void AP_MotorsHeli::reset_swash()
_servo_3->radio_min = 1000;
_servo_3->radio_max = 2000;
if( swash_type == AP_MOTORS_HELI_SWASH_CCPM ) { //CCPM Swashplate, perform servo control mixing
// roll factors
_rollFactor[CH_1] = cosf(radians(servo1_pos + 90 - phase_angle));
_rollFactor[CH_2] = cosf(radians(servo2_pos + 90 - phase_angle));
_rollFactor[CH_3] = cosf(radians(servo3_pos + 90 - phase_angle));
// pitch factors
_pitchFactor[CH_1] = cosf(radians(servo1_pos - phase_angle));
_pitchFactor[CH_2] = cosf(radians(servo2_pos - phase_angle));
_pitchFactor[CH_3] = cosf(radians(servo3_pos - phase_angle));
// collective factors
_collectiveFactor[CH_1] = 1;
_collectiveFactor[CH_2] = 1;
_collectiveFactor[CH_3] = 1;
}else{ //H1 Swashplate, keep servo outputs seperated
// roll factors
_rollFactor[CH_1] = 1;
_rollFactor[CH_2] = 0;
_rollFactor[CH_3] = 0;
// pitch factors
_pitchFactor[CH_1] = 0;
_pitchFactor[CH_2] = 1;
_pitchFactor[CH_3] = 0;
// collective factors
_collectiveFactor[CH_1] = 0;
_collectiveFactor[CH_2] = 0;
_collectiveFactor[CH_3] = 1;
}
// calculate factors based on swash type and servo position
calculate_roll_pitch_collective_factors();
// set roll, pitch and throttle scaling
_roll_scaler = 1.0f;
_pitch_scaler = 1.0f;
_collective_scalar = ((float)(_rc_throttle->radio_max - _rc_throttle->radio_min))/1000.0f;
_stab_throttle_scalar = 1.0f;
_collective_scalar_manual = 1.0f;
// we must be in set-up mode so mark swash as uninitialised
_swash_initialised = false;
_heliflags.swash_initialised = false;
}
// init_swash - initialise the swash plate
@ -389,34 +388,51 @@ void AP_MotorsHeli::init_swash()
_servo_3->set_range(0,1000);
_servo_4->set_angle(4500);
// ensure _coll values are reasonable
if( collective_min >= collective_max ) {
collective_min = 1000;
collective_max = 2000;
// range check collective min, max and mid
if( _collective_min >= _collective_max ) {
_collective_min = 1000;
_collective_max = 2000;
}
_collective_mid = constrain_int16(_collective_mid, _collective_min, _collective_max);
collective_mid = constrain_int16(collective_mid, collective_min, collective_max);
// calculate collective mid point as a number from 0 to 1000
_collective_mid_pwm = ((float)(_collective_mid-_collective_min))/((float)(_collective_max-_collective_min))*1000.0f;
// calculate throttle mid point
throttle_mid = ((float)(collective_mid-collective_min))/((float)(collective_max-collective_min))*1000.0f;
// determine roll, pitch and collective input scaling
_roll_scaler = (float)_roll_max/4500.0f;
_pitch_scaler = (float)_pitch_max/4500.0f;
_collective_scalar = ((float)(_collective_max-_collective_min))/1000.0f;
_collective_scalar_manual = ((float)(_manual_collective_max - _manual_collective_min))/100.0f;
// determine roll, pitch and throttle scaling
_roll_scaler = (float)roll_max/4500.0f;
_pitch_scaler = (float)pitch_max/4500.0f;
_collective_scalar = ((float)(collective_max-collective_min))/1000.0f;
_stab_throttle_scalar = ((float)(stab_col_max - stab_col_min))/100.0f;
// calculate factors based on swash type and servo position
calculate_roll_pitch_collective_factors();
if( swash_type == AP_MOTORS_HELI_SWASH_CCPM ) { //CCPM Swashplate, perform control mixing
// servo min/max values
_servo_1->radio_min = 1000;
_servo_1->radio_max = 2000;
_servo_2->radio_min = 1000;
_servo_2->radio_max = 2000;
_servo_3->radio_min = 1000;
_servo_3->radio_max = 2000;
// mark swash as initialised
_heliflags.swash_initialised = true;
}
// calculate_roll_pitch_collective_factors - calculate factors based on swash type and servo position
void AP_MotorsHeli::calculate_roll_pitch_collective_factors()
{
if (_swash_type == AP_MOTORS_HELI_SWASH_CCPM) { //CCPM Swashplate, perform control mixing
// roll factors
_rollFactor[CH_1] = cosf(radians(servo1_pos + 90 - phase_angle));
_rollFactor[CH_2] = cosf(radians(servo2_pos + 90 - phase_angle));
_rollFactor[CH_3] = cosf(radians(servo3_pos + 90 - phase_angle));
_rollFactor[CH_1] = cosf(radians(_servo1_pos + 90 - _phase_angle));
_rollFactor[CH_2] = cosf(radians(_servo2_pos + 90 - _phase_angle));
_rollFactor[CH_3] = cosf(radians(_servo3_pos + 90 - _phase_angle));
// pitch factors
_pitchFactor[CH_1] = cosf(radians(servo1_pos - phase_angle));
_pitchFactor[CH_2] = cosf(radians(servo2_pos - phase_angle));
_pitchFactor[CH_3] = cosf(radians(servo3_pos - phase_angle));
_pitchFactor[CH_1] = cosf(radians(_servo1_pos - _phase_angle));
_pitchFactor[CH_2] = cosf(radians(_servo2_pos - _phase_angle));
_pitchFactor[CH_3] = cosf(radians(_servo3_pos - _phase_angle));
// collective factors
_collectiveFactor[CH_1] = 1;
@ -440,17 +456,6 @@ void AP_MotorsHeli::init_swash()
_collectiveFactor[CH_2] = 0;
_collectiveFactor[CH_3] = 1;
}
// servo min/max values
_servo_1->radio_min = 1000;
_servo_1->radio_max = 2000;
_servo_2->radio_min = 1000;
_servo_2->radio_max = 2000;
_servo_3->radio_min = 1000;
_servo_3->radio_max = 2000;
// mark swash as initialised
_swash_initialised = true;
}
//
@ -466,16 +471,16 @@ void AP_MotorsHeli::move_swash(int16_t roll_out, int16_t pitch_out, int16_t coll
int16_t yaw_offset = 0;
int16_t coll_out_scaled;
if( servo_manual == 1 ) { // are we in manual servo mode? (i.e. swash set-up mode)?
if (_servo_manual == 1) { // are we in manual servo mode? (i.e. swash set-up mode)?
// check if we need to free up the swash
if( _swash_initialised ) {
if (_heliflags.swash_initialised) {
reset_swash();
}
coll_out_scaled = coll_in * _collective_scalar + _rc_throttle->radio_min - 1000;
}else{ // regular flight mode
// check if we need to reinitialise the swash
if( !_swash_initialised ) {
if (!_heliflags.swash_initialised) {
init_swash();
}
@ -485,28 +490,28 @@ void AP_MotorsHeli::move_swash(int16_t roll_out, int16_t pitch_out, int16_t coll
// coming into this equation at 4500 or less, and based on the original assumption of the
// total _servo_x.servo_out range being -4500 to 4500.
roll_out = roll_out * _roll_scaler;
roll_out = constrain_int16(roll_out, (int16_t)-roll_max, (int16_t)roll_max);
roll_out = constrain_int16(roll_out, (int16_t)-_roll_max, (int16_t)_roll_max);
pitch_out = pitch_out * _pitch_scaler;
pitch_out = constrain_int16(pitch_out, (int16_t)-pitch_max, (int16_t)pitch_max);
pitch_out = constrain_int16(pitch_out, (int16_t)-_pitch_max, (int16_t)_pitch_max);
// scale collective pitch
coll_out = constrain_int16(coll_in, 0, 1000);
if (stab_throttle){
coll_out = coll_out * _stab_throttle_scalar + stab_col_min*10;
_collective_out = constrain_int16(coll_in, 0, 1000);
if (_heliflags.manual_collective){
_collective_out = _collective_out * _collective_scalar_manual + _manual_collective_min*10;
}
coll_out_scaled = coll_out * _collective_scalar + collective_min - 1000;
coll_out_scaled = _collective_out * _collective_scalar + _collective_min - 1000;
// rudder feed forward based on collective
if( !ext_gyro_enabled ) {
yaw_offset = collective_yaw_effect * abs(coll_out_scaled - throttle_mid);
if (!_ext_gyro_enabled) {
yaw_offset = _collective_yaw_effect * abs(coll_out_scaled - _collective_mid_pwm);
}
}
// swashplate servos
_servo_1->servo_out = (_rollFactor[CH_1] * roll_out + _pitchFactor[CH_1] * pitch_out)/10 + _collectiveFactor[CH_1] * coll_out_scaled + (_servo_1->radio_trim-1500);
_servo_2->servo_out = (_rollFactor[CH_2] * roll_out + _pitchFactor[CH_2] * pitch_out)/10 + _collectiveFactor[CH_2] * coll_out_scaled + (_servo_2->radio_trim-1500);
if( swash_type == AP_MOTORS_HELI_SWASH_H1 ) {
if (_swash_type == AP_MOTORS_HELI_SWASH_H1) {
_servo_1->servo_out += 500;
_servo_2->servo_out += 500;
}
@ -532,8 +537,8 @@ void AP_MotorsHeli::move_swash(int16_t roll_out, int16_t pitch_out, int16_t coll
motor_out[AP_MOTORS_MOT_4] = _servo_4->radio_out;
// output gyro value
if( ext_gyro_enabled ) {
hal.rcout->write(AP_MOTORS_HELI_EXT_GYRO, ext_gyro_gain);
if (_ext_gyro_enabled) {
hal.rcout->write(AP_MOTORS_HELI_EXT_GYRO, _ext_gyro_gain);
}
}
@ -542,61 +547,60 @@ static long map(long x, long in_min, long in_max, long out_min, long out_max)
return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
}
void AP_MotorsHeli::rsc_control() {
if (armed() && (rsc_ramp >= rsc_ramp_up_rate)){ // rsc_ramp will never increase if rsc_mode = 0
if (motor_runup_timer < AP_MOTORS_HELI_MOTOR_RUNUP_TIME){ // therefore motor_runup_complete can never be true
motor_runup_timer++;
// rsc_control - update value to send to main rotor's ESC
void AP_MotorsHeli::rsc_control()
{
if (armed() && (_rsc_ramp >= _rsc_ramp_up_rate)){ // rsc_ramp will never increase if rsc_mode = 0
if (_motor_runup_timer < AP_MOTORS_HELI_MOTOR_RUNUP_TIME){ // therefore motor_runup_complete can never be true
_motor_runup_timer++;
} else {
motor_runup_complete = true;
_heliflags.motor_runup_complete = true;
}
} else {
motor_runup_complete = false; // motor_runup_complete will go to false if we
motor_runup_timer = 0; // disarm or wind down the motor
_heliflags.motor_runup_complete = false; // motor_runup_complete will go to false if we
_motor_runup_timer = 0; // disarm or wind down the motor
}
switch ( rsc_mode ) {
switch (_rsc_mode) {
case AP_MOTORS_HELI_RSC_MODE_CH8_PASSTHROUGH:
if( armed() && (_rc_8->radio_in > (_rc_8->radio_min + 10))) {
if (rsc_ramp < rsc_ramp_up_rate) {
rsc_ramp++;
rsc_output = map(rsc_ramp, 0, rsc_ramp_up_rate, _rc_8->radio_min, _rc_8->radio_in);
if (_rsc_ramp < _rsc_ramp_up_rate) {
_rsc_ramp++;
_rsc_output = map(_rsc_ramp, 0, _rsc_ramp_up_rate, _rc_8->radio_min, _rc_8->radio_in);
} else {
rsc_output = _rc_8->radio_in;
_rsc_output = _rc_8->radio_in;
}
} else {
rsc_ramp--; //Return RSC Ramp to 0 slowly, allowing for "warm restart"
if (rsc_ramp < 0) {
rsc_ramp = 0;
_rsc_ramp--; //Return RSC Ramp to 0 slowly, allowing for "warm restart"
if (_rsc_ramp < 0) {
_rsc_ramp = 0;
}
rsc_output = _rc_8->radio_min;
_rsc_output = _rc_8->radio_min;
}
hal.rcout->write(AP_MOTORS_HELI_EXT_RSC, rsc_output);
hal.rcout->write(AP_MOTORS_HELI_EXT_RSC, _rsc_output);
break;
case AP_MOTORS_HELI_RSC_MODE_EXT_GOVERNOR:
if( armed() && _rc_8->control_in > 100) {
if (rsc_ramp < rsc_ramp_up_rate) {
rsc_ramp++;
rsc_output = map(rsc_ramp, 0, rsc_ramp_up_rate, 1000, ext_gov_setpoint);
if (armed() && _rc_8->control_in > 100) {
if (_rsc_ramp < _rsc_ramp_up_rate) {
_rsc_ramp++;
_rsc_output = map(_rsc_ramp, 0, _rsc_ramp_up_rate, 1000, _ext_gov_setpoint);
} else {
rsc_output = ext_gov_setpoint;
_rsc_output = _ext_gov_setpoint;
}
} else {
rsc_ramp--; //Return RSC Ramp to 0 slowly, allowing for "warm restart"
if (rsc_ramp < 0) {
rsc_ramp = 0;
_rsc_ramp--; //Return RSC Ramp to 0 slowly, allowing for "warm restart"
if (_rsc_ramp < 0) {
_rsc_ramp = 0;
}
rsc_output = 1000; //Just to be sure RSC output is 0
_rsc_output = 1000; //Just to be sure RSC output is 0
}
hal.rcout->write(AP_MOTORS_HELI_EXT_RSC, rsc_output);
hal.rcout->write(AP_MOTORS_HELI_EXT_RSC, _rsc_output);
break;
default:
break;
}
};
}

View File

@ -41,15 +41,16 @@
#define AP_MOTORS_HELI_COLLECTIVE_MID 1500
// swash min and max position (expressed as percentage) while in stabilize mode
#define AP_MOTORS_HELI_STAB_COL_MIN 0
#define AP_MOTORS_HELI_STAB_COL_MAX 100
#define AP_MOTORS_HELI_MANUAL_COLLECTIVE_MIN 0
#define AP_MOTORS_HELI_MANUAL_COLLECTIVE_MAX 100
// default external gyro gain (ch7 out)
#define AP_MOTORS_HELI_EXT_GYRO_GAIN 1350
// main rotor control types (ch8 out)
#define AP_MOTORS_HELI_RSC_MODE_CH8_PASSTHROUGH 1
#define AP_MOTORS_HELI_RSC_MODE_EXT_GOVERNOR 2
// main rotor speed control types (ch8 out)
#define AP_MOTORS_HELI_RSC_MODE_NONE 0 // main rotor ESC is directly connected to receiver
#define AP_MOTORS_HELI_RSC_MODE_CH8_PASSTHROUGH 1 // main rotor ESC is connected to RC8 (out) but pilot still directly controls speed with a passthrough from CH8 (in)
#define AP_MOTORS_HELI_RSC_MODE_EXT_GOVERNOR 2 // main rotor ESC is connected to RC8 and controlled by arducopter
// default main rotor governor set-point (ch8 out)
#define AP_MOTORS_HELI_EXT_GOVERNOR_SETPOINT 1500
@ -86,54 +87,25 @@ public:
_servo_3(swash_servo_3),
_servo_4(yaw_servo),
_rc_8(rc_8),
throttle_mid(0),
_roll_scaler(1),
_pitch_scaler(1),
_collective_scalar(1),
_stab_throttle_scalar(1),
_swash_initialised(false),
stab_throttle(false),
motor_runup_complete(false)
_collective_scalar_manual(1),
_collective_out(0),
_collective_mid_pwm(0),
_rsc_output(0),
_rsc_ramp(0),
_motor_runup_timer(0)
{
AP_Param::setup_object_defaults(this, var_info);
// initialise flags
_heliflags.swash_initialised = 0;
_heliflags.manual_collective = 0;
_heliflags.landing_collective = 0;
_heliflags.motor_runup_complete = 0;
};
// external objects we depend upon
RC_Channel *_servo_1;
RC_Channel *_servo_2;
RC_Channel *_servo_3;
RC_Channel *_servo_4;
RC_Channel *_rc_8;
// parameters
AP_Int16 servo1_pos; // Angular location of swash servo #1
AP_Int16 servo2_pos; // Angular location of swash servo #2
AP_Int16 servo3_pos; // Angular location of swash servo #3
AP_Int16 roll_max; // Maximum roll angle of the swash plate in centi-degrees
AP_Int16 pitch_max; // Maximum pitch angle of the swash plate in centi-degrees
AP_Int16 collective_min; // Lowest possible servo position for the swashplate
AP_Int16 collective_max; // Highest possible servo position for the swashplate
AP_Int16 collective_mid; // Swash servo position corresponding to zero collective pitch (or zero lift for Assymetrical blades)
AP_Int16 ext_gyro_enabled; // Enabled/Disable an external rudder gyro connected to channel 7. With no external gyro a more complex yaw controller is used
AP_Int8 swash_type; // Swash Type Setting - either 3-servo CCPM or H1 Mechanical Mixing
AP_Int16 ext_gyro_gain; // PWM sent to the external gyro on Ch7
AP_Int8 servo_manual; // Pass radio inputs directly to servos during set-up through mission planner
AP_Int16 phase_angle; // Phase angle correction for rotor head. If pitching the swash forward induces a roll, this can be correct the problem
AP_Int16 collective_yaw_effect; // Feed-forward compensation to automatically add rudder input when collective pitch is increased. Can be positive or negative depending on mechanics.
AP_Int16 ext_gov_setpoint; // PWM passed to the external motor governor when external governor is enabledv
AP_Int8 rsc_mode; // Sets which main rotor ESC control mode is active
AP_Int16 rsc_ramp_up_rate; // The time in 100th seconds the RSC takes to ramp up to speed
AP_Int8 flybar_mode; // Flybar present or not. Affects attitude controller used during ACRO flight mode
AP_Int8 stab_col_min; // Minimum collective position while flying in Stabilize Mode
AP_Int8 stab_col_max; // Maximum collective position while flying in Stabilize Mode
// internal variables
int16_t throttle_mid; // throttle mid point in pwm form (i.e. 0 ~ 1000)
bool stab_throttle; // true if we are in Stabilize Mode for reduced Swash Range
bool motor_runup_complete; // true if the rotors have had enough time to wind up
int16_t coll_out; // returns the actual collective in use to the main code
// init
void Init();
@ -144,46 +116,124 @@ public:
// enable - starts allowing signals to be sent to motors
void enable();
// motor test
void output_test();
// output_min - sends minimum values out to the motors
void output_min();
// init_swash - initialise the swash plate
void init_swash();
// output_test - wiggle servos in order to show connections are correct
void output_test();
// output - sends commands to the motors
void output_armed();
//
// heli specific methods
//
// allow_arming - returns true if main rotor is spinning and it is ok to arm
bool allow_arming();
// ext_gyro_enabled - returns true if we have an external gyro for yaw control
bool ext_gyro_enabled() { return _ext_gyro_enabled; }
// ext_gyro_gain - gets and sets external gyro gain output on ch7
int16_t ext_gyro_gain() { return _ext_gyro_gain; }
void ext_gyro_gain(int16_t gain) { _ext_gyro_gain = gain; }
// has_flybar - returns true if we have a mechical flybar
bool has_flybar() { return _flybar_mode; }
// get_collective_mid - returns collective mid position as a number from 0 ~ 1000
int16_t get_collective_mid() { return _collective_mid; }
// get_collective_out - returns collective position from last output as a number from 0 ~ 1000
int16_t get_collective_out() { return _collective_out; }
// set_collective_for_manual_control - limits collective to reduced range for stabilize (i.e. manual) flying
void set_collective_for_manual_control(bool true_false) { _heliflags.manual_collective = true_false; }
// get min/max collective when controlled manually as a number from 0 ~ 1000 (note that parameter is stored as percentage)
int16_t get_manual_collective_min() { return _manual_collective_min*10; }
int16_t get_manual_collective_max() { return _manual_collective_max*10; }
// set_collective_for_landing - limits collective from going too low if we know we are landed
void set_collective_for_landing(bool landing) { _heliflags.landing_collective = landing; }
// return true if the main rotor is up to speed
bool motor_runup_complete() { return _heliflags.motor_runup_complete; }
// var_info for holding Parameter information
static const struct AP_Param::GroupInfo var_info[];
protected:
// output - sends commands to the motors
void output_armed();
void output_disarmed();
private:
// heli_move_swash - moves swash plate to attitude of parameters passed in
void move_swash(int16_t roll_out, int16_t pitch_out, int16_t coll_in, int16_t yaw_out);
// reset_swash - free up swash for maximum movements. Used for set-up
void reset_swash();
void output_disarmed();
// init_swash - initialise the swash plate
void init_swash();
// calculate_roll_pitch_collective_factors - calculate factors based on swash type and servo position
void calculate_roll_pitch_collective_factors();
// rsc_control - update value to send to main rotor's ESC
void rsc_control();
// external objects we depend upon
RC_Channel *_servo_1;
RC_Channel *_servo_2;
RC_Channel *_servo_3;
RC_Channel *_servo_4;
RC_Channel *_rc_8;
// flags bitmask
struct heliflags_type {
uint8_t swash_initialised : 1; // true if swash has been initialised
uint8_t manual_collective : 1; // true if pilot is manually controlling the collective. If true then we reduce the swash range
uint8_t landing_collective : 1; // true if collective is setup for landing which has much higher minimum
uint8_t motor_runup_complete : 1; // true if the rotors have had enough time to wind up
} _heliflags;
// parameters
AP_Int16 _servo1_pos; // Angular location of swash servo #1
AP_Int16 _servo2_pos; // Angular location of swash servo #2
AP_Int16 _servo3_pos; // Angular location of swash servo #3
AP_Int16 _roll_max; // Maximum roll angle of the swash plate in centi-degrees
AP_Int16 _pitch_max; // Maximum pitch angle of the swash plate in centi-degrees
AP_Int16 _collective_min; // Lowest possible servo position for the swashplate
AP_Int16 _collective_max; // Highest possible servo position for the swashplate
AP_Int16 _collective_mid; // Swash servo position corresponding to zero collective pitch (or zero lift for Assymetrical blades)
AP_Int16 _ext_gyro_enabled; // Enabled/Disable an external rudder gyro connected to channel 7. With no external gyro a more complex yaw controller is used
AP_Int8 _swash_type; // Swash Type Setting - either 3-servo CCPM or H1 Mechanical Mixing
AP_Int16 _ext_gyro_gain; // PWM sent to the external gyro on Ch7
AP_Int8 _servo_manual; // Pass radio inputs directly to servos during set-up through mission planner
AP_Int16 _phase_angle; // Phase angle correction for rotor head. If pitching the swash forward induces a roll, this can be correct the problem
AP_Int16 _collective_yaw_effect; // Feed-forward compensation to automatically add rudder input when collective pitch is increased. Can be positive or negative depending on mechanics.
AP_Int16 _ext_gov_setpoint; // PWM passed to the external motor governor when external governor is enabledv
AP_Int8 _rsc_mode; // Sets which main rotor ESC control mode is active
AP_Int16 _rsc_ramp_up_rate; // The time in 100th seconds the RSC takes to ramp up to speed
AP_Int8 _flybar_mode; // Flybar present or not. Affects attitude controller used during ACRO flight mode
AP_Int8 _manual_collective_min; // Minimum collective position while pilot directly controls the collective
AP_Int8 _manual_collective_max; // Maximum collective position while pilot directly controls the collective
// internal variables
float _rollFactor[AP_MOTORS_HELI_NUM_SWASHPLATE_SERVOS];
float _pitchFactor[AP_MOTORS_HELI_NUM_SWASHPLATE_SERVOS];
float _collectiveFactor[AP_MOTORS_HELI_NUM_SWASHPLATE_SERVOS];
// internally used variables
float _roll_scaler; // scaler to convert roll input from radio (i.e. -4500 ~ 4500) to max roll range
float _pitch_scaler; // scaler to convert pitch input from radio (i.e. -4500 ~ 4500) to max pitch range
float _collective_scalar; // throttle scalar to convert pwm form (i.e. 0 ~ 1000) passed in to actual servo range (i.e 1250~1750 would be 500)
float _stab_throttle_scalar; // throttle scalar to reduce the range of the collective movement in stabilize mode
bool _swash_initialised; // true if swash has been initialised
int16_t rsc_output; // final output to the external motor governor 1000-2000
int16_t rsc_ramp; // current state of ramping
int16_t motor_runup_timer; // timer to determine if motor has run up fully
float _collective_scalar; // collective scalar to convert pwm form (i.e. 0 ~ 1000) passed in to actual servo range (i.e 1250~1750 would be 500)
float _collective_scalar_manual; // collective scalar to reduce the range of the collective movement while collective is being controlled manually (i.e. directly by the pilot)
int16_t _collective_out; // actual collective pitch value. Required by the main code for calculating cruise throttle
int16_t _collective_mid_pwm; // collective mid parameter value converted to pwm form (i.e. 0 ~ 1000)
int16_t _rsc_output; // final output to the external motor governor 1000-2000
int16_t _rsc_ramp; // current state of ramping
int16_t _motor_runup_timer; // timer to determine if motor has run up fully
};
#endif // AP_MOTORSHELI