mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-03 06:28:27 -04:00
AC_PID: Support changing update period
This commit is contained in:
parent
06730ab1bc
commit
0fefe1a05a
@ -73,8 +73,8 @@ const AP_Param::GroupInfo AC_HELI_PID::var_info[] = {
|
||||
};
|
||||
|
||||
/// Constructor for PID
|
||||
AC_HELI_PID::AC_HELI_PID(float initial_p, float initial_i, float initial_d, float initial_ff, float initial_imax, float initial_filt_T_hz, float initial_filt_E_hz, float initial_filt_D_hz, float dt) :
|
||||
AC_PID(initial_p, initial_i, initial_d, initial_ff, initial_imax, initial_filt_T_hz, initial_filt_E_hz, initial_filt_D_hz, dt)
|
||||
AC_HELI_PID::AC_HELI_PID(float initial_p, float initial_i, float initial_d, float initial_ff, float initial_imax, float initial_filt_T_hz, float initial_filt_E_hz, float initial_filt_D_hz) :
|
||||
AC_PID(initial_p, initial_i, initial_d, initial_ff, initial_imax, initial_filt_T_hz, initial_filt_E_hz, initial_filt_D_hz)
|
||||
{
|
||||
_last_requested_rate = 0;
|
||||
}
|
||||
@ -84,7 +84,7 @@ AC_HELI_PID::AC_HELI_PID(float initial_p, float initial_i, float initial_d, floa
|
||||
|
||||
void AC_HELI_PID::update_leaky_i(float leak_rate)
|
||||
{
|
||||
if (!is_zero(_ki) && !is_zero(_dt)){
|
||||
if (!is_zero(_ki)){
|
||||
|
||||
// integrator does not leak down below Leak Min
|
||||
if (_integrator > _leak_min){
|
||||
|
@ -17,7 +17,7 @@ class AC_HELI_PID : public AC_PID {
|
||||
public:
|
||||
|
||||
/// Constructor for PID
|
||||
AC_HELI_PID(float initial_p, float initial_i, float initial_d, float initial_ff, float initial_imax, float initial_filt_T_hz, float initial_filt_E_hz, float initial_filt_D_hz, float dt);
|
||||
AC_HELI_PID(float initial_p, float initial_i, float initial_d, float initial_ff, float initial_imax, float initial_filt_T_hz, float initial_filt_E_hz, float initial_filt_D_hz);
|
||||
|
||||
CLASS_NO_COPY(AC_HELI_PID);
|
||||
|
||||
|
@ -69,8 +69,7 @@ const AP_Param::GroupInfo AC_PID::var_info[] = {
|
||||
|
||||
// Constructor
|
||||
AC_PID::AC_PID(float initial_p, float initial_i, float initial_d, float initial_ff, float initial_imax, float initial_filt_T_hz, float initial_filt_E_hz, float initial_filt_D_hz,
|
||||
float dt, float initial_srmax, float initial_srtau):
|
||||
_dt(dt)
|
||||
float initial_srmax, float initial_srtau)
|
||||
{
|
||||
// load parameter values from eeprom
|
||||
AP_Param::setup_object_defaults(this, var_info);
|
||||
@ -96,13 +95,6 @@ AC_PID::AC_PID(float initial_p, float initial_i, float initial_d, float initial_
|
||||
_slew_limit_scale = 1;
|
||||
}
|
||||
|
||||
// set_dt - set time step in seconds
|
||||
void AC_PID::set_dt(float dt)
|
||||
{
|
||||
// set dt and calculate the input filter alpha
|
||||
_dt = dt;
|
||||
}
|
||||
|
||||
// filt_T_hz - set target filter hz
|
||||
void AC_PID::filt_T_hz(float hz)
|
||||
{
|
||||
@ -131,7 +123,7 @@ void AC_PID::slew_limit(float smax)
|
||||
// target and error are filtered
|
||||
// the derivative is then calculated and filtered
|
||||
// the integral is then updated based on the setting of the limit flag
|
||||
float AC_PID::update_all(float target, float measurement, bool limit)
|
||||
float AC_PID::update_all(float target, float measurement, float dt, bool limit)
|
||||
{
|
||||
// don't process inf or NaN
|
||||
if (!isfinite(target) || !isfinite(measurement)) {
|
||||
@ -146,24 +138,24 @@ float AC_PID::update_all(float target, float measurement, bool limit)
|
||||
_derivative = 0.0f;
|
||||
} else {
|
||||
float error_last = _error;
|
||||
_target += get_filt_T_alpha() * (target - _target);
|
||||
_error += get_filt_E_alpha() * ((_target - measurement) - _error);
|
||||
_target += get_filt_T_alpha(dt) * (target - _target);
|
||||
_error += get_filt_E_alpha(dt) * ((_target - measurement) - _error);
|
||||
|
||||
// calculate and filter derivative
|
||||
if (_dt > 0.0f) {
|
||||
float derivative = (_error - error_last) / _dt;
|
||||
_derivative += get_filt_D_alpha() * (derivative - _derivative);
|
||||
if (is_positive(dt)) {
|
||||
float derivative = (_error - error_last) / dt;
|
||||
_derivative += get_filt_D_alpha(dt) * (derivative - _derivative);
|
||||
}
|
||||
}
|
||||
|
||||
// update I term
|
||||
update_i(limit);
|
||||
update_i(dt, limit);
|
||||
|
||||
float P_out = (_error * _kp);
|
||||
float D_out = (_derivative * _kd);
|
||||
|
||||
// calculate slew limit modifier for P+D
|
||||
_pid_info.Dmod = _slew_limiter.modifier((_pid_info.P + _pid_info.D) * _slew_limit_scale, _dt);
|
||||
_pid_info.Dmod = _slew_limiter.modifier((_pid_info.P + _pid_info.D) * _slew_limit_scale, dt);
|
||||
_pid_info.slew_rate = _slew_limiter.get_slew_rate();
|
||||
|
||||
P_out *= _pid_info.Dmod;
|
||||
@ -184,7 +176,7 @@ float AC_PID::update_all(float target, float measurement, bool limit)
|
||||
// the integral is then updated based on the setting of the limit flag
|
||||
// Target and Measured must be set manually for logging purposes.
|
||||
// todo: remove function when it is no longer used.
|
||||
float AC_PID::update_error(float error, bool limit)
|
||||
float AC_PID::update_error(float error, float dt, bool limit)
|
||||
{
|
||||
// don't process inf or NaN
|
||||
if (!isfinite(error)) {
|
||||
@ -200,23 +192,23 @@ float AC_PID::update_error(float error, bool limit)
|
||||
_derivative = 0.0f;
|
||||
} else {
|
||||
float error_last = _error;
|
||||
_error += get_filt_E_alpha() * (error - _error);
|
||||
_error += get_filt_E_alpha(dt) * (error - _error);
|
||||
|
||||
// calculate and filter derivative
|
||||
if (_dt > 0.0f) {
|
||||
float derivative = (_error - error_last) / _dt;
|
||||
_derivative += get_filt_D_alpha() * (derivative - _derivative);
|
||||
if (is_positive(dt)) {
|
||||
float derivative = (_error - error_last) / dt;
|
||||
_derivative += get_filt_D_alpha(dt) * (derivative - _derivative);
|
||||
}
|
||||
}
|
||||
|
||||
// update I term
|
||||
update_i(limit);
|
||||
update_i(dt, limit);
|
||||
|
||||
float P_out = (_error * _kp);
|
||||
float D_out = (_derivative * _kd);
|
||||
|
||||
// calculate slew limit modifier for P+D
|
||||
_pid_info.Dmod = _slew_limiter.modifier((_pid_info.P + _pid_info.D) * _slew_limit_scale, _dt);
|
||||
_pid_info.Dmod = _slew_limiter.modifier((_pid_info.P + _pid_info.D) * _slew_limit_scale, dt);
|
||||
_pid_info.slew_rate = _slew_limiter.get_slew_rate();
|
||||
|
||||
P_out *= _pid_info.Dmod;
|
||||
@ -233,12 +225,12 @@ float AC_PID::update_error(float error, bool limit)
|
||||
|
||||
// update_i - update the integral
|
||||
// If the limit flag is set the integral is only allowed to shrink
|
||||
void AC_PID::update_i(bool limit)
|
||||
void AC_PID::update_i(float dt, bool limit)
|
||||
{
|
||||
if (!is_zero(_ki) && is_positive(_dt)) {
|
||||
if (!is_zero(_ki) && is_positive(dt)) {
|
||||
// Ensure that integrator can only be reduced if the output is saturated
|
||||
if (!limit || ((is_positive(_integrator) && is_negative(_error)) || (is_negative(_integrator) && is_positive(_error)))) {
|
||||
_integrator += ((float)_error * _ki) * _dt;
|
||||
_integrator += ((float)_error * _ki) * dt;
|
||||
_integrator = constrain_float(_integrator, -_kimax, _kimax);
|
||||
}
|
||||
} else {
|
||||
@ -302,7 +294,7 @@ void AC_PID::save_gains()
|
||||
}
|
||||
|
||||
/// Overload the function call operator to permit easy initialisation
|
||||
void AC_PID::operator()(float p_val, float i_val, float d_val, float ff_val, float imax_val, float input_filt_T_hz, float input_filt_E_hz, float input_filt_D_hz, float dt)
|
||||
void AC_PID::operator()(float p_val, float i_val, float d_val, float ff_val, float imax_val, float input_filt_T_hz, float input_filt_E_hz, float input_filt_D_hz)
|
||||
{
|
||||
_kp.set(p_val);
|
||||
_ki.set(i_val);
|
||||
@ -312,31 +304,24 @@ void AC_PID::operator()(float p_val, float i_val, float d_val, float ff_val, flo
|
||||
_filt_T_hz.set(input_filt_T_hz);
|
||||
_filt_E_hz.set(input_filt_E_hz);
|
||||
_filt_D_hz.set(input_filt_D_hz);
|
||||
_dt = dt;
|
||||
}
|
||||
|
||||
// get_filt_T_alpha - get the target filter alpha
|
||||
float AC_PID::get_filt_T_alpha() const
|
||||
float AC_PID::get_filt_T_alpha(float dt) const
|
||||
{
|
||||
return get_filt_alpha(_filt_T_hz);
|
||||
return calc_lowpass_alpha_dt(dt, _filt_T_hz);
|
||||
}
|
||||
|
||||
// get_filt_E_alpha - get the error filter alpha
|
||||
float AC_PID::get_filt_E_alpha() const
|
||||
float AC_PID::get_filt_E_alpha(float dt) const
|
||||
{
|
||||
return get_filt_alpha(_filt_E_hz);
|
||||
return calc_lowpass_alpha_dt(dt, _filt_E_hz);
|
||||
}
|
||||
|
||||
// get_filt_D_alpha - get the derivative filter alpha
|
||||
float AC_PID::get_filt_D_alpha() const
|
||||
float AC_PID::get_filt_D_alpha(float dt) const
|
||||
{
|
||||
return get_filt_alpha(_filt_D_hz);
|
||||
}
|
||||
|
||||
// get_filt_alpha - calculate a filter alpha
|
||||
float AC_PID::get_filt_alpha(float filt_hz) const
|
||||
{
|
||||
return calc_lowpass_alpha_dt(_dt, filt_hz);
|
||||
return calc_lowpass_alpha_dt(dt, _filt_D_hz);
|
||||
}
|
||||
|
||||
void AC_PID::set_integrator(float target, float measurement, float integrator)
|
||||
@ -356,9 +341,11 @@ void AC_PID::set_integrator(float integrator)
|
||||
_pid_info.I = _integrator;
|
||||
}
|
||||
|
||||
void AC_PID::relax_integrator(float integrator, float time_constant)
|
||||
void AC_PID::relax_integrator(float integrator, float dt, float time_constant)
|
||||
{
|
||||
integrator = constrain_float(integrator, -_kimax, _kimax);
|
||||
_integrator = _integrator + (integrator - _integrator) * (_dt / (_dt + time_constant));
|
||||
if (is_positive(dt)) {
|
||||
_integrator = _integrator + (integrator - _integrator) * (dt / (dt + time_constant));
|
||||
}
|
||||
_pid_info.I = _integrator;
|
||||
}
|
||||
|
@ -23,18 +23,15 @@ public:
|
||||
|
||||
// Constructor for PID
|
||||
AC_PID(float initial_p, float initial_i, float initial_d, float initial_ff, float initial_imax, float initial_filt_T_hz, float initial_filt_E_hz, float initial_filt_D_hz,
|
||||
float dt, float initial_srmax=0, float initial_srtau=1.0);
|
||||
float initial_srmax=0, float initial_srtau=1.0);
|
||||
|
||||
CLASS_NO_COPY(AC_PID);
|
||||
|
||||
// set_dt - set time step in seconds
|
||||
void set_dt(float dt);
|
||||
|
||||
// update_all - set target and measured inputs to PID controller and calculate outputs
|
||||
// target and error are filtered
|
||||
// the derivative is then calculated and filtered
|
||||
// the integral is then updated based on the setting of the limit flag
|
||||
float update_all(float target, float measurement, bool limit = false);
|
||||
float update_all(float target, float measurement, float dt, bool limit = false);
|
||||
|
||||
// update_error - set error input to PID controller and calculate outputs
|
||||
// target is set to zero and error is set and filtered
|
||||
@ -42,11 +39,11 @@ public:
|
||||
// the integral is then updated based on the setting of the limit flag
|
||||
// Target and Measured must be set manually for logging purposes.
|
||||
// todo: remove function when it is no longer used.
|
||||
float update_error(float error, bool limit = false);
|
||||
float update_error(float error, float dt, bool limit = false);
|
||||
|
||||
// update_i - update the integral
|
||||
// if the limit flag is set the integral is only allowed to shrink
|
||||
void update_i(bool limit);
|
||||
void update_i(float dt, bool limit);
|
||||
|
||||
// get_pid - get results from pid controller
|
||||
float get_pid() const;
|
||||
@ -71,7 +68,7 @@ public:
|
||||
void save_gains();
|
||||
|
||||
/// operator function call for easy initialisation
|
||||
void operator()(float p_val, float i_val, float d_val, float ff_val, float imax_val, float input_filt_T_hz, float input_filt_E_hz, float input_filt_D_hz, float dt);
|
||||
void operator()(float p_val, float i_val, float d_val, float ff_val, float imax_val, float input_filt_T_hz, float input_filt_E_hz, float input_filt_D_hz);
|
||||
|
||||
// get accessors
|
||||
AP_Float &kP() { return _kp; }
|
||||
@ -85,10 +82,9 @@ public:
|
||||
AP_Float &slew_limit() { return _slew_rate_max; }
|
||||
|
||||
float imax() const { return _kimax.get(); }
|
||||
float get_filt_alpha(float filt_hz) const;
|
||||
float get_filt_T_alpha() const;
|
||||
float get_filt_E_alpha() const;
|
||||
float get_filt_D_alpha() const;
|
||||
float get_filt_T_alpha(float dt) const;
|
||||
float get_filt_E_alpha(float dt) const;
|
||||
float get_filt_D_alpha(float dt) const;
|
||||
|
||||
// set accessors
|
||||
void kP(const float v) { _kp.set(v); }
|
||||
@ -109,7 +105,7 @@ public:
|
||||
void set_integrator(float target, float measurement, float i);
|
||||
void set_integrator(float error, float i);
|
||||
void set_integrator(float i);
|
||||
void relax_integrator(float integrator, float time_constant);
|
||||
void relax_integrator(float integrator, float dt, float time_constant);
|
||||
|
||||
// set slew limiter scale factor
|
||||
void set_slew_limit_scale(int8_t scale) { _slew_limit_scale = scale; }
|
||||
@ -149,7 +145,6 @@ protected:
|
||||
} _flags;
|
||||
|
||||
// internal variables
|
||||
float _dt; // timestep in seconds
|
||||
float _integrator; // integrator value
|
||||
float _target; // target value to enable filtering
|
||||
float _error; // error value to enable filtering
|
||||
|
@ -50,8 +50,7 @@ const AP_Param::GroupInfo AC_PID_2D::var_info[] = {
|
||||
};
|
||||
|
||||
// Constructor
|
||||
AC_PID_2D::AC_PID_2D(float initial_kP, float initial_kI, float initial_kD, float initial_kFF, float initial_imax, float initial_filt_E_hz, float initial_filt_D_hz, float dt) :
|
||||
_dt(dt)
|
||||
AC_PID_2D::AC_PID_2D(float initial_kP, float initial_kI, float initial_kD, float initial_kFF, float initial_imax, float initial_filt_E_hz, float initial_filt_D_hz)
|
||||
{
|
||||
// load parameter values from eeprom
|
||||
AP_Param::setup_object_defaults(this, var_info);
|
||||
@ -72,7 +71,7 @@ AC_PID_2D::AC_PID_2D(float initial_kP, float initial_kI, float initial_kD, float
|
||||
// target and error are filtered
|
||||
// the derivative is then calculated and filtered
|
||||
// the integral is then updated if it does not increase in the direction of the limit vector
|
||||
Vector2f AC_PID_2D::update_all(const Vector2f &target, const Vector2f &measurement, const Vector2f &limit)
|
||||
Vector2f AC_PID_2D::update_all(const Vector2f &target, const Vector2f &measurement, float dt, const Vector2f &limit)
|
||||
{
|
||||
// don't process inf or NaN
|
||||
if (target.is_nan() || target.is_inf() ||
|
||||
@ -89,17 +88,17 @@ Vector2f AC_PID_2D::update_all(const Vector2f &target, const Vector2f &measureme
|
||||
_derivative.zero();
|
||||
} else {
|
||||
Vector2f error_last{_error};
|
||||
_error += ((_target - measurement) - _error) * get_filt_E_alpha();
|
||||
_error += ((_target - measurement) - _error) * get_filt_E_alpha(dt);
|
||||
|
||||
// calculate and filter derivative
|
||||
if (_dt > 0.0f) {
|
||||
const Vector2f derivative{(_error - error_last) / _dt};
|
||||
_derivative += (derivative - _derivative) * get_filt_D_alpha();
|
||||
if (is_positive(dt)) {
|
||||
const Vector2f derivative{(_error - error_last) / dt};
|
||||
_derivative += (derivative - _derivative) * get_filt_D_alpha(dt);
|
||||
}
|
||||
}
|
||||
|
||||
// update I term
|
||||
update_i(limit);
|
||||
update_i(dt, limit);
|
||||
|
||||
_pid_info_x.target = _target.x;
|
||||
_pid_info_x.actual = measurement.x;
|
||||
@ -120,19 +119,19 @@ Vector2f AC_PID_2D::update_all(const Vector2f &target, const Vector2f &measureme
|
||||
return _error * _kp + _integrator + _derivative * _kd + _target * _kff;
|
||||
}
|
||||
|
||||
Vector2f AC_PID_2D::update_all(const Vector3f &target, const Vector3f &measurement, const Vector3f &limit)
|
||||
Vector2f AC_PID_2D::update_all(const Vector3f &target, const Vector3f &measurement, float dt, const Vector3f &limit)
|
||||
{
|
||||
return update_all(Vector2f{target.x, target.y}, Vector2f{measurement.x, measurement.y}, Vector2f{limit.x, limit.y});
|
||||
return update_all(Vector2f{target.x, target.y}, Vector2f{measurement.x, measurement.y}, dt, Vector2f{limit.x, limit.y});
|
||||
}
|
||||
|
||||
// update_i - update the integral
|
||||
// If the limit is set the integral is only allowed to reduce in the direction of the limit
|
||||
void AC_PID_2D::update_i(const Vector2f &limit)
|
||||
void AC_PID_2D::update_i(float dt, const Vector2f &limit)
|
||||
{
|
||||
_pid_info_x.limit = false;
|
||||
_pid_info_y.limit = false;
|
||||
|
||||
Vector2f delta_integrator = (_error * _ki) * _dt;
|
||||
Vector2f delta_integrator = (_error * _ki) * dt;
|
||||
float integrator_length = _integrator.length();
|
||||
_integrator += delta_integrator;
|
||||
// do not let integrator increase in length if delta_integrator is in the direction of limit
|
||||
@ -186,15 +185,15 @@ void AC_PID_2D::save_gains()
|
||||
}
|
||||
|
||||
// get the target filter alpha
|
||||
float AC_PID_2D::get_filt_E_alpha() const
|
||||
float AC_PID_2D::get_filt_E_alpha(float dt) const
|
||||
{
|
||||
return calc_lowpass_alpha_dt(_dt, _filt_E_hz);
|
||||
return calc_lowpass_alpha_dt(dt, _filt_E_hz);
|
||||
}
|
||||
|
||||
// get the derivative filter alpha
|
||||
float AC_PID_2D::get_filt_D_alpha() const
|
||||
float AC_PID_2D::get_filt_D_alpha(float dt) const
|
||||
{
|
||||
return calc_lowpass_alpha_dt(_dt, _filt_D_hz);
|
||||
return calc_lowpass_alpha_dt(dt, _filt_D_hz);
|
||||
}
|
||||
|
||||
void AC_PID_2D::set_integrator(const Vector2f& target, const Vector2f& measurement, const Vector2f& i)
|
||||
|
@ -15,23 +15,20 @@ class AC_PID_2D {
|
||||
public:
|
||||
|
||||
// Constructor for PID
|
||||
AC_PID_2D(float initial_kP, float initial_kI, float initial_kD, float initial_kFF, float initial_imax, float initial_filt_hz, float initial_filt_d_hz, float dt);
|
||||
AC_PID_2D(float initial_kP, float initial_kI, float initial_kD, float initial_kFF, float initial_imax, float initial_filt_hz, float initial_filt_d_hz);
|
||||
|
||||
CLASS_NO_COPY(AC_PID_2D);
|
||||
|
||||
// set time step in seconds
|
||||
void set_dt(float dt) { _dt = dt; }
|
||||
|
||||
// update_all - set target and measured inputs to PID controller and calculate outputs
|
||||
// target and error are filtered
|
||||
// the derivative is then calculated and filtered
|
||||
// the integral is then updated if it does not increase in the direction of the limit vector
|
||||
Vector2f update_all(const Vector2f &target, const Vector2f &measurement, const Vector2f &limit);
|
||||
Vector2f update_all(const Vector3f &target, const Vector3f &measurement, const Vector3f &limit);
|
||||
Vector2f update_all(const Vector2f &target, const Vector2f &measurement, float dt, const Vector2f &limit);
|
||||
Vector2f update_all(const Vector3f &target, const Vector3f &measurement, float dt, const Vector3f &limit);
|
||||
|
||||
// update the integral
|
||||
// if the limit flag is set the integral is only allowed to shrink
|
||||
void update_i(const Vector2f &limit);
|
||||
void update_i(float dt, const Vector2f &limit);
|
||||
|
||||
// get results from pid controller
|
||||
Vector2f get_p() const;
|
||||
@ -57,8 +54,8 @@ public:
|
||||
AP_Float &filt_E_hz() { return _filt_E_hz; }
|
||||
AP_Float &filt_D_hz() { return _filt_D_hz; }
|
||||
float imax() const { return _kimax.get(); }
|
||||
float get_filt_E_alpha() const;
|
||||
float get_filt_D_alpha() const;
|
||||
float get_filt_E_alpha(float dt) const;
|
||||
float get_filt_D_alpha(float dt) const;
|
||||
|
||||
// set accessors
|
||||
void kP(float v) { _kp.set(v); }
|
||||
@ -93,7 +90,6 @@ protected:
|
||||
AP_Float _filt_D_hz; // PID derivative filter frequency in Hz
|
||||
|
||||
// internal variables
|
||||
float _dt; // timestep in seconds
|
||||
Vector2f _target; // target value to enable filtering
|
||||
Vector2f _error; // error value to enable filtering
|
||||
Vector2f _derivative; // last derivative from low-pass filter
|
||||
|
@ -52,8 +52,7 @@ const AP_Param::GroupInfo AC_PID_Basic::var_info[] = {
|
||||
};
|
||||
|
||||
// Constructor
|
||||
AC_PID_Basic::AC_PID_Basic(float initial_p, float initial_i, float initial_d, float initial_ff, float initial_imax, float initial_filt_E_hz, float initial_filt_D_hz, float dt) :
|
||||
_dt(dt)
|
||||
AC_PID_Basic::AC_PID_Basic(float initial_p, float initial_i, float initial_d, float initial_ff, float initial_imax, float initial_filt_E_hz, float initial_filt_D_hz)
|
||||
{
|
||||
// load parameter values from eeprom
|
||||
AP_Param::setup_object_defaults(this, var_info);
|
||||
@ -70,16 +69,16 @@ AC_PID_Basic::AC_PID_Basic(float initial_p, float initial_i, float initial_d, fl
|
||||
_reset_filter = true;
|
||||
}
|
||||
|
||||
float AC_PID_Basic::update_all(float target, float measurement, bool limit)
|
||||
float AC_PID_Basic::update_all(float target, float measurement, float dt, bool limit)
|
||||
{
|
||||
return update_all(target, measurement, (limit && is_negative(_integrator)), (limit && is_positive(_integrator)));
|
||||
return update_all(target, measurement, dt, (limit && is_negative(_integrator)), (limit && is_positive(_integrator)));
|
||||
}
|
||||
|
||||
// update_all - set target and measured inputs to PID controller and calculate outputs
|
||||
// target and error are filtered
|
||||
// the derivative is then calculated and filtered
|
||||
// the integral is then updated based on the setting of the limit flag
|
||||
float AC_PID_Basic::update_all(float target, float measurement, bool limit_neg, bool limit_pos)
|
||||
float AC_PID_Basic::update_all(float target, float measurement, float dt, bool limit_neg, bool limit_pos)
|
||||
{
|
||||
// don't process inf or NaN
|
||||
if (!isfinite(target) || isnan(target) ||
|
||||
@ -97,17 +96,17 @@ float AC_PID_Basic::update_all(float target, float measurement, bool limit_neg,
|
||||
_derivative = 0.0f;
|
||||
} else {
|
||||
float error_last = _error;
|
||||
_error += get_filt_E_alpha() * ((_target - measurement) - _error);
|
||||
_error += get_filt_E_alpha(dt) * ((_target - measurement) - _error);
|
||||
|
||||
// calculate and filter derivative
|
||||
if (is_positive(_dt)) {
|
||||
float derivative = (_error - error_last) / _dt;
|
||||
_derivative += get_filt_D_alpha() * (derivative - _derivative);
|
||||
if (is_positive(dt)) {
|
||||
float derivative = (_error - error_last) / dt;
|
||||
_derivative += get_filt_D_alpha(dt) * (derivative - _derivative);
|
||||
}
|
||||
}
|
||||
|
||||
// update I term
|
||||
update_i(limit_neg, limit_pos);
|
||||
update_i(dt, limit_neg, limit_pos);
|
||||
|
||||
const float P_out = _error * _kp;
|
||||
const float D_out = _derivative * _kd;
|
||||
@ -126,12 +125,12 @@ float AC_PID_Basic::update_all(float target, float measurement, bool limit_neg,
|
||||
// update_i - update the integral
|
||||
// if limit_neg is true, the integral can only increase
|
||||
// if limit_pos is true, the integral can only decrease
|
||||
void AC_PID_Basic::update_i(bool limit_neg, bool limit_pos)
|
||||
void AC_PID_Basic::update_i(float dt, bool limit_neg, bool limit_pos)
|
||||
{
|
||||
if (!is_zero(_ki)) {
|
||||
// Ensure that integrator can only be reduced if the output is saturated
|
||||
if (!((limit_neg && is_negative(_error)) || (limit_pos && is_positive(_error)))) {
|
||||
_integrator += ((float)_error * _ki) * _dt;
|
||||
_integrator += ((float)_error * _ki) * dt;
|
||||
_integrator = constrain_float(_integrator, -_kimax, _kimax);
|
||||
}
|
||||
} else {
|
||||
@ -158,15 +157,15 @@ void AC_PID_Basic::save_gains()
|
||||
}
|
||||
|
||||
// get_filt_T_alpha - get the target filter alpha
|
||||
float AC_PID_Basic::get_filt_E_alpha() const
|
||||
float AC_PID_Basic::get_filt_E_alpha(float dt) const
|
||||
{
|
||||
return calc_lowpass_alpha_dt(_dt, _filt_E_hz);
|
||||
return calc_lowpass_alpha_dt(dt, _filt_E_hz);
|
||||
}
|
||||
|
||||
// get_filt_D_alpha - get the derivative filter alpha
|
||||
float AC_PID_Basic::get_filt_D_alpha() const
|
||||
float AC_PID_Basic::get_filt_D_alpha(float dt) const
|
||||
{
|
||||
return calc_lowpass_alpha_dt(_dt, _filt_D_hz);
|
||||
return calc_lowpass_alpha_dt(dt, _filt_D_hz);
|
||||
}
|
||||
|
||||
void AC_PID_Basic::set_integrator(float target, float measurement, float i)
|
||||
|
@ -13,21 +13,18 @@ class AC_PID_Basic {
|
||||
public:
|
||||
|
||||
// Constructor for PID
|
||||
AC_PID_Basic(float initial_p, float initial_i, float initial_d, float initial_ff, float initial_imax, float initial_filt_E_hz, float initial_filt_D_hz, float dt);
|
||||
|
||||
// set time step in seconds
|
||||
void set_dt(float dt) { _dt = dt; }
|
||||
AC_PID_Basic(float initial_p, float initial_i, float initial_d, float initial_ff, float initial_imax, float initial_filt_E_hz, float initial_filt_D_hz);
|
||||
|
||||
// set target and measured inputs to PID controller and calculate outputs
|
||||
// target and error are filtered
|
||||
// the derivative is then calculated and filtered
|
||||
// the integral is then updated based on the setting of the limit flag
|
||||
float update_all(float target, float measurement, bool limit = false) WARN_IF_UNUSED;
|
||||
float update_all(float target, float measurement, bool limit_neg, bool limit_pos) WARN_IF_UNUSED;
|
||||
float update_all(float target, float measurement, float dt, bool limit = false) WARN_IF_UNUSED;
|
||||
float update_all(float target, float measurement, float dt, bool limit_neg, bool limit_pos) WARN_IF_UNUSED;
|
||||
|
||||
// update the integral
|
||||
// if the limit flags are set the integral is only allowed to shrink
|
||||
void update_i(bool limit_neg, bool limit_pos);
|
||||
void update_i(float dt, bool limit_neg, bool limit_pos);
|
||||
|
||||
// get results from pid controller
|
||||
float get_p() const WARN_IF_UNUSED { return _error * _kp; }
|
||||
@ -53,8 +50,8 @@ public:
|
||||
AP_Float &filt_E_hz() WARN_IF_UNUSED { return _filt_E_hz; }
|
||||
AP_Float &filt_D_hz() WARN_IF_UNUSED { return _filt_D_hz; }
|
||||
float imax() const WARN_IF_UNUSED { return _kimax.get(); }
|
||||
float get_filt_E_alpha() const WARN_IF_UNUSED;
|
||||
float get_filt_D_alpha() const WARN_IF_UNUSED;
|
||||
float get_filt_E_alpha(float dt) const WARN_IF_UNUSED;
|
||||
float get_filt_D_alpha(float dt) const WARN_IF_UNUSED;
|
||||
|
||||
// set accessors
|
||||
void kP(float v) { _kp.set(v); }
|
||||
@ -87,7 +84,6 @@ protected:
|
||||
AP_Float _filt_D_hz; // PID derivative filter frequency in Hz
|
||||
|
||||
// internal variables
|
||||
float _dt; // timestep in seconds
|
||||
float _target; // target value to enable filtering
|
||||
float _error; // error value to enable filtering
|
||||
float _derivative; // last derivative for low-pass filter
|
||||
|
@ -13,8 +13,7 @@ const AP_Param::GroupInfo AC_P_1D::var_info[] = {
|
||||
};
|
||||
|
||||
// Constructor
|
||||
AC_P_1D::AC_P_1D(float initial_p, float dt) :
|
||||
_dt(dt)
|
||||
AC_P_1D::AC_P_1D(float initial_p)
|
||||
{
|
||||
// load parameter values from eeprom
|
||||
AP_Param::setup_object_defaults(this, var_info);
|
||||
@ -38,7 +37,7 @@ float AC_P_1D::update_all(float &target, float measurement)
|
||||
}
|
||||
|
||||
// MIN(_Dxy_max, _D2xy_max / _kxy_P) limits the max accel to the point where max jerk is exceeded
|
||||
return sqrt_controller(_error, _kp, _D1_max, _dt);
|
||||
return sqrt_controller(_error, _kp, _D1_max, 0.0);
|
||||
}
|
||||
|
||||
// set_limits - sets the maximum error to limit output and first and second derivative of output
|
||||
|
@ -12,13 +12,10 @@ class AC_P_1D {
|
||||
public:
|
||||
|
||||
// constructor
|
||||
AC_P_1D(float initial_p, float dt);
|
||||
AC_P_1D(float initial_p);
|
||||
|
||||
CLASS_NO_COPY(AC_P_1D);
|
||||
|
||||
// set time step in seconds
|
||||
void set_dt(float dt) { _dt = dt; }
|
||||
|
||||
// update_all - set target and measured inputs to P controller and calculate outputs
|
||||
// target and measurement are filtered
|
||||
float update_all(float &target, float measurement) WARN_IF_UNUSED;
|
||||
@ -56,7 +53,6 @@ private:
|
||||
AP_Float _kp;
|
||||
|
||||
// internal variables
|
||||
float _dt; // time step in seconds
|
||||
float _error; // time step in seconds
|
||||
float _error_min; // error limit in negative direction
|
||||
float _error_max; // error limit in positive direction
|
||||
|
@ -13,8 +13,7 @@ const AP_Param::GroupInfo AC_P_2D::var_info[] = {
|
||||
};
|
||||
|
||||
// Constructor
|
||||
AC_P_2D::AC_P_2D(float initial_p, float dt) :
|
||||
_dt(dt)
|
||||
AC_P_2D::AC_P_2D(float initial_p)
|
||||
{
|
||||
// load parameter values from eeprom
|
||||
AP_Param::setup_object_defaults(this, var_info);
|
||||
@ -36,7 +35,7 @@ Vector2f AC_P_2D::update_all(postype_t &target_x, postype_t &target_y, const Vec
|
||||
}
|
||||
|
||||
// MIN(_Dmax, _D2max / _kp) limits the max accel to the point where max jerk is exceeded
|
||||
return sqrt_controller(_error, _kp, _D1_max, _dt);
|
||||
return sqrt_controller(_error, _kp, _D1_max, 0.0);
|
||||
}
|
||||
|
||||
// set_limits - sets the maximum error to limit output and first and second derivative of output
|
||||
|
@ -12,13 +12,10 @@ class AC_P_2D {
|
||||
public:
|
||||
|
||||
// constructor
|
||||
AC_P_2D(float initial_p, float dt);
|
||||
AC_P_2D(float initial_p);
|
||||
|
||||
CLASS_NO_COPY(AC_P_2D);
|
||||
|
||||
// set time step in seconds
|
||||
void set_dt(float dt) { _dt = dt; }
|
||||
|
||||
// set target and measured inputs to P controller and calculate outputs
|
||||
Vector2f update_all(postype_t &target_x, postype_t &target_y, const Vector2f &measurement) WARN_IF_UNUSED;
|
||||
|
||||
@ -58,7 +55,6 @@ private:
|
||||
AP_Float _kp;
|
||||
|
||||
// internal variables
|
||||
float _dt; // time step in seconds
|
||||
Vector2f _error; // time step in seconds
|
||||
float _error_max; // error limit in positive direction
|
||||
float _D1_max; // maximum first derivative of output
|
||||
|
@ -70,8 +70,8 @@ void setup()
|
||||
void loop()
|
||||
{
|
||||
// setup (unfortunately must be done here as we cannot create a global AC_PID object)
|
||||
AC_PID pid(TEST_P, TEST_I, TEST_D, 0.0f, TEST_IMAX * 100.0f, 0.0f, 0.0f, TEST_FILTER, TEST_DT);
|
||||
AC_HELI_PID heli_pid(TEST_P, TEST_I, TEST_D, TEST_INITIAL_FF, TEST_IMAX * 100, 0.0f, 0.0f, TEST_FILTER, TEST_DT);
|
||||
AC_PID pid(TEST_P, TEST_I, TEST_D, 0.0f, TEST_IMAX * 100.0f, 0.0f, 0.0f, TEST_FILTER);
|
||||
AC_HELI_PID heli_pid(TEST_P, TEST_I, TEST_D, TEST_INITIAL_FF, TEST_IMAX * 100, 0.0f, 0.0f, TEST_FILTER);
|
||||
|
||||
// display PID gains
|
||||
hal.console->printf("P %f I %f D %f imax %f\n", (double)pid.kP(), (double)pid.kI(), (double)pid.kD(), (double)pid.imax());
|
||||
@ -91,7 +91,7 @@ void loop()
|
||||
rc().read_input(); // poll the radio for new values
|
||||
const uint16_t radio_in = c->get_radio_in();
|
||||
const int16_t error = radio_in - radio_trim;
|
||||
pid.update_error(error);
|
||||
pid.update_error(error, TEST_DT);
|
||||
const float control_P = pid.get_p();
|
||||
const float control_I = pid.get_i();
|
||||
const float control_D = pid.get_d();
|
||||
|
Loading…
Reference in New Issue
Block a user