AP_Motors: Support changing update period

This commit is contained in:
Leonard Hall 2022-12-07 11:33:36 +10:30 committed by Andrew Tridgell
parent 67043eec14
commit 0e50b5bb94
23 changed files with 75 additions and 79 deletions

View File

@ -367,15 +367,13 @@ void AP_Motors6DOF::output_armed_stabilizing()
float _batt_current_delta = _batt_current - _batt_current_last;
float loop_interval = 1.0f/_loop_rate;
float _current_change_rate = _batt_current_delta / _dt;
float _current_change_rate = _batt_current_delta / loop_interval;
float predicted_current = _batt_current + (_current_change_rate * _dt * 5);
float predicted_current = _batt_current + (_current_change_rate * loop_interval * 5);
float batt_current_ratio = _batt_current / _batt_current_max;
float batt_current_ratio = _batt_current/_batt_current_max;
float predicted_current_ratio = predicted_current/_batt_current_max;
float predicted_current_ratio = predicted_current / _batt_current_max;
_batt_current_last = _batt_current;
if (predicted_current > _batt_current_max * 1.5f) {
@ -383,7 +381,7 @@ void AP_Motors6DOF::output_armed_stabilizing()
} else if (_batt_current < _batt_current_max && predicted_current > _batt_current_max) {
batt_current_ratio = predicted_current_ratio;
}
_output_limited += (loop_interval/(loop_interval+_batt_current_time_constant)) * (1 - batt_current_ratio);
_output_limited += (_dt / (_dt + _batt_current_time_constant)) * (1 - batt_current_ratio);
_output_limited = constrain_float(_output_limited, 0.0f, 1.0f);

View File

@ -12,8 +12,8 @@
class AP_Motors6DOF : public AP_MotorsMatrix {
public:
AP_Motors6DOF(uint16_t loop_rate, uint16_t speed_hz = AP_MOTORS_SPEED_DEFAULT) :
AP_MotorsMatrix(loop_rate, speed_hz) {
AP_Motors6DOF(uint16_t speed_hz = AP_MOTORS_SPEED_DEFAULT) :
AP_MotorsMatrix(speed_hz) {
AP_Param::setup_object_defaults(this, var_info);
};

View File

@ -23,8 +23,8 @@ class AP_MotorsCoax : public AP_MotorsMulticopter {
public:
/// Constructor
AP_MotorsCoax(uint16_t loop_rate, uint16_t speed_hz = AP_MOTORS_SPEED_DEFAULT) :
AP_MotorsMulticopter(loop_rate, speed_hz)
AP_MotorsCoax(uint16_t speed_hz = AP_MOTORS_SPEED_DEFAULT) :
AP_MotorsMulticopter(speed_hz)
{
};

View File

@ -522,7 +522,7 @@ void AP_MotorsHeli::reset_swash_servo(SRV_Channel::Aux_servo_function_t function
// update the throttle input filter
void AP_MotorsHeli::update_throttle_filter()
{
_throttle_filter.apply(_throttle_in, 1.0f/_loop_rate);
_throttle_filter.apply(_throttle_in, _dt);
// constrain filtered throttle
if (_throttle_filter.get() < 0.0f) {

View File

@ -40,9 +40,8 @@ class AP_MotorsHeli : public AP_Motors {
public:
/// Constructor
AP_MotorsHeli( uint16_t loop_rate,
uint16_t speed_hz = AP_MOTORS_HELI_SPEED_DEFAULT) :
AP_Motors(loop_rate, speed_hz),
AP_MotorsHeli( uint16_t speed_hz = AP_MOTORS_HELI_SPEED_DEFAULT) :
AP_Motors(speed_hz),
_main_rotor(SRV_Channel::k_heli_rsc, AP_MOTORS_HELI_RSC)
{
AP_Param::setup_object_defaults(this, var_info);

View File

@ -699,27 +699,27 @@ void AP_MotorsHeli_Dual::servo_test()
// this test cycle is equivalent to that of AP_MotorsHeli_Single, but excluding
// mixing of yaw, as that physical movement is represented by pitch and roll
_servo_test_cycle_time += 1.0f / _loop_rate;
_servo_test_cycle_time += _dt;
if ((_servo_test_cycle_time >= 0.0f && _servo_test_cycle_time < 0.5f)|| // Tilt swash back
(_servo_test_cycle_time >= 6.0f && _servo_test_cycle_time < 6.5f)){
_pitch_test += (1.0f / (_loop_rate/2));
_oscillate_angle += 8 * M_PI / _loop_rate;
_pitch_test += 2.0 * _dt;
_oscillate_angle += 8 * M_PI * _dt;
} else if ((_servo_test_cycle_time >= 0.5f && _servo_test_cycle_time < 4.5f)|| // Roll swash around
(_servo_test_cycle_time >= 6.5f && _servo_test_cycle_time < 10.5f)){
_oscillate_angle += M_PI / (2 * _loop_rate);
_oscillate_angle += 0.5 * M_PI * _dt;
_roll_test = sinf(_oscillate_angle);
_pitch_test = cosf(_oscillate_angle);
} else if ((_servo_test_cycle_time >= 4.5f && _servo_test_cycle_time < 5.0f)|| // Return swash to level
(_servo_test_cycle_time >= 10.5f && _servo_test_cycle_time < 11.0f)){
_pitch_test -= (1.0f / (_loop_rate/2));
_oscillate_angle += 8 * M_PI / _loop_rate;
_pitch_test -= 2.0 * _dt;
_oscillate_angle += 8 * M_PI * _dt;
} else if (_servo_test_cycle_time >= 5.0f && _servo_test_cycle_time < 6.0f){ // Raise swash to top
_collective_test += (1.0f / _loop_rate);
_oscillate_angle += 2 * M_PI / _loop_rate;
_collective_test += _dt;
_oscillate_angle += 2 * M_PI * _dt;
} else if (_servo_test_cycle_time >= 11.0f && _servo_test_cycle_time < 12.0f){ // Lower swash to bottom
_collective_test -= (1.0f / _loop_rate);
_oscillate_angle += 2 * M_PI / _loop_rate;
_collective_test -= _dt;
_oscillate_angle += 2 * M_PI * _dt;
} else { // reset cycle
_servo_test_cycle_time = 0.0f;
_oscillate_angle = 0.0f;

View File

@ -36,9 +36,8 @@
class AP_MotorsHeli_Dual : public AP_MotorsHeli {
public:
// constructor
AP_MotorsHeli_Dual(uint16_t loop_rate,
uint16_t speed_hz = AP_MOTORS_HELI_SPEED_DEFAULT) :
AP_MotorsHeli(loop_rate, speed_hz)
AP_MotorsHeli_Dual(uint16_t speed_hz = AP_MOTORS_HELI_SPEED_DEFAULT) :
AP_MotorsHeli(speed_hz)
{
AP_Param::setup_object_defaults(this, var_info);
};

View File

@ -19,9 +19,8 @@
class AP_MotorsHeli_Quad : public AP_MotorsHeli {
public:
// constructor
AP_MotorsHeli_Quad(uint16_t loop_rate,
uint16_t speed_hz = AP_MOTORS_HELI_SPEED_DEFAULT) :
AP_MotorsHeli(loop_rate, speed_hz)
AP_MotorsHeli_Quad(uint16_t speed_hz = AP_MOTORS_HELI_SPEED_DEFAULT) :
AP_MotorsHeli(speed_hz)
{
AP_Param::setup_object_defaults(this, var_info);
};

View File

@ -582,31 +582,31 @@ void AP_MotorsHeli_Single::output_to_motors()
// servo_test - move servos through full range of movement
void AP_MotorsHeli_Single::servo_test()
{
_servo_test_cycle_time += 1.0f / _loop_rate;
_servo_test_cycle_time += _dt;
if ((_servo_test_cycle_time >= 0.0f && _servo_test_cycle_time < 0.5f)|| // Tilt swash back
(_servo_test_cycle_time >= 6.0f && _servo_test_cycle_time < 6.5f)){
_pitch_test += (1.0f / (_loop_rate / 2.0f));
_oscillate_angle += 8 * M_PI / _loop_rate;
_pitch_test += 2.0 * _dt;
_oscillate_angle += 8 * M_PI * _dt;
_yaw_test = 0.5f * sinf(_oscillate_angle);
} else if ((_servo_test_cycle_time >= 0.5f && _servo_test_cycle_time < 4.5f)|| // Roll swash around
(_servo_test_cycle_time >= 6.5f && _servo_test_cycle_time < 10.5f)){
_oscillate_angle += M_PI / (2 * _loop_rate);
_oscillate_angle += 0.5 * M_PI * _dt;
_roll_test = sinf(_oscillate_angle);
_pitch_test = cosf(_oscillate_angle);
_yaw_test = sinf(_oscillate_angle);
} else if ((_servo_test_cycle_time >= 4.5f && _servo_test_cycle_time < 5.0f)|| // Return swash to level
(_servo_test_cycle_time >= 10.5f && _servo_test_cycle_time < 11.0f)){
_pitch_test -= (1.0f / (_loop_rate / 2.0f));
_oscillate_angle += 8 * M_PI / _loop_rate;
_pitch_test -= 2.0 * _dt;
_oscillate_angle += 8 * M_PI * _dt;
_yaw_test = 0.5f * sinf(_oscillate_angle);
} else if (_servo_test_cycle_time >= 5.0f && _servo_test_cycle_time < 6.0f){ // Raise swash to top
_collective_test += (1.0f / _loop_rate);
_oscillate_angle += 2 * M_PI / _loop_rate;
_collective_test += _dt;
_oscillate_angle += 2 * M_PI * _dt;
_yaw_test = sinf(_oscillate_angle);
} else if (_servo_test_cycle_time >= 11.0f && _servo_test_cycle_time < 12.0f){ // Lower swash to bottom
_collective_test -= (1.0f / _loop_rate);
_oscillate_angle += 2 * M_PI / _loop_rate;
_collective_test -= _dt;
_oscillate_angle += 2 * M_PI * _dt;
_yaw_test = sinf(_oscillate_angle);
} else { // reset cycle
_servo_test_cycle_time = 0.0f;

View File

@ -38,9 +38,8 @@
class AP_MotorsHeli_Single : public AP_MotorsHeli {
public:
// constructor
AP_MotorsHeli_Single(uint16_t loop_rate,
uint16_t speed_hz = AP_MOTORS_HELI_SPEED_DEFAULT) :
AP_MotorsHeli(loop_rate, speed_hz),
AP_MotorsHeli_Single(uint16_t speed_hz = AP_MOTORS_HELI_SPEED_DEFAULT) :
AP_MotorsHeli(speed_hz),
_tail_rotor(SRV_Channel::k_heli_tail_rsc, AP_MOTORS_HELI_SINGLE_TAILRSC),
_swashplate()
{

View File

@ -414,7 +414,7 @@ void AP_MotorsMatrix::output_armed_stabilizing()
void AP_MotorsMatrix::check_for_failed_motor(float throttle_thrust_best_plus_adj)
{
// record filtered and scaled thrust output for motor loss monitoring purposes
float alpha = 1.0f / (1.0f + _loop_rate * 0.5f);
float alpha = _dt / (_dt + 0.5f);
for (uint8_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) {
if (motor_enabled[i]) {
_thrust_rpyt_out_filt[i] += alpha * (_thrust_rpyt_out[i] - _thrust_rpyt_out_filt[i]);

View File

@ -15,8 +15,8 @@ class AP_MotorsMatrix : public AP_MotorsMulticopter {
public:
/// Constructor
AP_MotorsMatrix(uint16_t loop_rate, uint16_t speed_hz = AP_MOTORS_SPEED_DEFAULT) :
AP_MotorsMulticopter(loop_rate, speed_hz)
AP_MotorsMatrix(uint16_t speed_hz = AP_MOTORS_SPEED_DEFAULT) :
AP_MotorsMulticopter(speed_hz)
{
if (_singleton != nullptr) {
AP_HAL::panic("AP_MotorsMatrix must be singleton");

View File

@ -10,8 +10,8 @@ class AP_MotorsMatrix_6DoF_Scripting : public AP_MotorsMatrix {
public:
/// Constructor
AP_MotorsMatrix_6DoF_Scripting(uint16_t loop_rate, uint16_t speed_hz = AP_MOTORS_SPEED_DEFAULT) :
AP_MotorsMatrix(loop_rate, speed_hz)
AP_MotorsMatrix_6DoF_Scripting(uint16_t speed_hz = AP_MOTORS_SPEED_DEFAULT) :
AP_MotorsMatrix(speed_hz)
{
if (_singleton != nullptr) {
AP_HAL::panic("AP_MotorsMatrix 6DoF must be singleton");

View File

@ -7,8 +7,8 @@ class AP_MotorsMatrix_Scripting_Dynamic : public AP_MotorsMatrix {
public:
// Constructor
AP_MotorsMatrix_Scripting_Dynamic(uint16_t loop_rate, uint16_t speed_hz = AP_MOTORS_SPEED_DEFAULT) :
AP_MotorsMatrix(loop_rate, speed_hz)
AP_MotorsMatrix_Scripting_Dynamic(uint16_t speed_hz = AP_MOTORS_SPEED_DEFAULT) :
AP_MotorsMatrix(speed_hz)
{
if (_singleton != nullptr) {
AP_HAL::panic("AP_MotorsMatrix_Scripting_Dynamic must be singleton");

View File

@ -212,8 +212,8 @@ const AP_Param::GroupInfo AP_MotorsMulticopter::var_info[] = {
};
// Constructor
AP_MotorsMulticopter::AP_MotorsMulticopter(uint16_t loop_rate, uint16_t speed_hz) :
AP_Motors(loop_rate, speed_hz),
AP_MotorsMulticopter::AP_MotorsMulticopter(uint16_t speed_hz) :
AP_Motors(speed_hz),
_lift_max(1.0f),
_throttle_limit(1.0f)
{
@ -285,7 +285,7 @@ void AP_MotorsMulticopter::output_min()
void AP_MotorsMulticopter::update_throttle_filter()
{
if (armed()) {
_throttle_filter.apply(_throttle_in, 1.0f / _loop_rate);
_throttle_filter.apply(_throttle_in, _dt);
// constrain filtered throttle
if (_throttle_filter.get() < 0.0f) {
_throttle_filter.reset(0.0f);
@ -324,8 +324,7 @@ float AP_MotorsMulticopter::get_current_limit_max_throttle()
float batt_current_ratio = _batt_current / batt_current_max;
float loop_interval = 1.0f / _loop_rate;
_throttle_limit += (loop_interval / (loop_interval + _batt_current_time_constant)) * (1.0f - batt_current_ratio);
_throttle_limit += (_dt / (_dt + _batt_current_time_constant)) * (1.0f - batt_current_ratio);
// throttle limit drops to 20% between hover and full throttle
_throttle_limit = constrain_float(_throttle_limit, 0.2f, 1.0f);
@ -389,7 +388,7 @@ void AP_MotorsMulticopter::update_lift_max_from_batt_voltage()
_batt_voltage_resting_estimate = constrain_float(_batt_voltage_resting_estimate, _batt_voltage_min, _batt_voltage_max);
// filter at 0.5 Hz
float batt_voltage_filt = _batt_voltage_filt.apply(_batt_voltage_resting_estimate / _batt_voltage_max, 1.0f / _loop_rate);
float batt_voltage_filt = _batt_voltage_filt.apply(_batt_voltage_resting_estimate / _batt_voltage_max, _dt);
// calculate lift max
float thrust_curve_expo = constrain_float(_thrust_curve_expo, -1.0f, 1.0f);
@ -479,13 +478,13 @@ void AP_MotorsMulticopter::set_actuator_with_slew(float& actuator_output, float
// If MOT_SLEW_UP_TIME is set, calculate the highest allowed new output value, constrained 0.0~1.0
if (is_positive(_slew_up_time)) {
float output_delta_up_max = 1.0f / (constrain_float(_slew_up_time, 0.0f, 0.5f) * _loop_rate);
float output_delta_up_max = _dt / (constrain_float(_slew_up_time, 0.0f, 0.5f));
output_slew_limit_up = constrain_float(actuator_output + output_delta_up_max, 0.0f, 1.0f);
}
// If MOT_SLEW_DN_TIME is set, calculate the lowest allowed new output value, constrained 0.0~1.0
if (is_positive(_slew_dn_time)) {
float output_delta_dn_max = 1.0f / (constrain_float(_slew_dn_time, 0.0f, 0.5f) * _loop_rate);
float output_delta_dn_max = _dt / (constrain_float(_slew_dn_time, 0.0f, 0.5f));
output_slew_limit_dn = constrain_float(actuator_output - output_delta_dn_max, 0.0f, 1.0f);
}
@ -538,7 +537,7 @@ void AP_MotorsMulticopter::output_logic()
{
if (armed()) {
if (_disarm_disable_pwm && (_disarm_safe_timer < _safe_time)) {
_disarm_safe_timer += 1.0f/_loop_rate;
_disarm_safe_timer += _dt;
} else {
_disarm_safe_timer = _safe_time;
}
@ -557,7 +556,7 @@ void AP_MotorsMulticopter::output_logic()
_spool_up_time.set(0.05);
}
const float spool_step = 1.0f / (_spool_up_time * _loop_rate);
const float spool_step = _dt / _spool_up_time;
switch (_spool_state) {
case SpoolState::SHUT_DOWN:
// Motors should be stationary.

View File

@ -33,7 +33,7 @@ class AP_MotorsMulticopter : public AP_Motors {
public:
// Constructor
AP_MotorsMulticopter(uint16_t loop_rate, uint16_t speed_hz = AP_MOTORS_SPEED_DEFAULT);
AP_MotorsMulticopter(uint16_t speed_hz = AP_MOTORS_SPEED_DEFAULT);
// output - sends commands to the motors
virtual void output() override;

View File

@ -23,8 +23,8 @@ class AP_MotorsSingle : public AP_MotorsMulticopter {
public:
/// Constructor
AP_MotorsSingle(uint16_t loop_rate, uint16_t speed_hz = AP_MOTORS_SPEED_DEFAULT) :
AP_MotorsMulticopter(loop_rate, speed_hz)
AP_MotorsSingle(uint16_t speed_hz = AP_MOTORS_SPEED_DEFAULT) :
AP_MotorsMulticopter(speed_hz)
{
};

View File

@ -55,8 +55,8 @@ void AP_MotorsTailsitter::init(motor_frame_class frame_class, motor_frame_type f
/// Constructor
AP_MotorsTailsitter::AP_MotorsTailsitter(uint16_t loop_rate, uint16_t speed_hz) :
AP_MotorsMulticopter(loop_rate, speed_hz)
AP_MotorsTailsitter::AP_MotorsTailsitter(uint16_t speed_hz) :
AP_MotorsMulticopter(speed_hz)
{
set_update_rate(speed_hz);
}

View File

@ -12,7 +12,7 @@ class AP_MotorsTailsitter : public AP_MotorsMulticopter {
public:
/// Constructor
AP_MotorsTailsitter(uint16_t loop_rate, uint16_t speed_hz = AP_MOTORS_SPEED_DEFAULT);
AP_MotorsTailsitter(uint16_t speed_hz = AP_MOTORS_SPEED_DEFAULT);
// init
void init(motor_frame_class frame_class, motor_frame_type frame_type) override;

View File

@ -18,8 +18,8 @@ class AP_MotorsTri : public AP_MotorsMulticopter {
public:
/// Constructor
AP_MotorsTri(uint16_t loop_rate, uint16_t speed_hz = AP_MOTORS_SPEED_DEFAULT) :
AP_MotorsMulticopter(loop_rate, speed_hz)
AP_MotorsTri(uint16_t speed_hz = AP_MOTORS_SPEED_DEFAULT) :
AP_MotorsMulticopter(speed_hz)
{
};

View File

@ -25,8 +25,7 @@ extern const AP_HAL::HAL& hal;
AP_Motors *AP_Motors::_singleton;
// Constructor
AP_Motors::AP_Motors(uint16_t loop_rate, uint16_t speed_hz) :
_loop_rate(loop_rate),
AP_Motors::AP_Motors(uint16_t speed_hz) :
_speed_hz(speed_hz),
_throttle_filter(),
_spool_desired(DesiredSpoolState::SHUT_DOWN),

View File

@ -103,7 +103,7 @@ public:
void get_frame_and_type_string(char *buffer, uint8_t buflen) const;
// Constructor
AP_Motors(uint16_t loop_rate, uint16_t speed_hz = AP_MOTORS_SPEED_DEFAULT);
AP_Motors(uint16_t speed_hz = AP_MOTORS_SPEED_DEFAULT);
// singleton support
static AP_Motors *get_singleton(void) { return _singleton; }
@ -188,6 +188,12 @@ public:
// set_density_ratio - sets air density as a proportion of sea level density
void set_air_density_ratio(float ratio) { _air_density_ratio = ratio; }
// set_dt / get_dt - dt is the time since the last time the motor mixers were updated
// _dt should be set based on the time of the last IMU read used by these controllers
// the motor mixers should run on each loop to ensure normal operation
void set_dt(float dt) { _dt = dt; }
float get_dt() const { return _dt; }
// structure for holding motor limit flags
struct AP_Motors_limit {
uint8_t roll : 1; // we have reached roll or pitch limit
@ -231,9 +237,6 @@ public:
// pilot input in the -1 ~ +1 range for roll, pitch and yaw. 0~1 range for throttle
void set_radio_passthrough(float roll_input, float pitch_input, float throttle_input, float yaw_input);
// set loop rate. Used to support loop rate as a parameter
void set_loop_rate(uint16_t loop_rate) { _loop_rate = loop_rate; }
// return the roll factor of any motor, this is used for tilt rotors and tail sitters
// using copter motors for forward flight
virtual float get_roll_factor(uint8_t i) { return 0.0f; }
@ -293,7 +296,7 @@ protected:
virtual void save_params_on_disarm() {}
// internal variables
uint16_t _loop_rate; // rate in Hz at which output() function is called (normally 400hz)
float _dt; // time difference (in seconds) since the last loop time
uint16_t _speed_hz; // speed in hz to send updates to motors
float _roll_in; // desired roll control from attitude controllers, -1 ~ +1
float _roll_in_ff; // desired roll feed forward control from attitude controllers, -1 ~ +1

View File

@ -30,8 +30,8 @@ const AP_HAL::HAL& hal = AP_HAL::get_HAL();
class AP_MotorsMulticopter_test : public AP_MotorsMulticopter {
public:
AP_MotorsMulticopter_test(uint16_t loop_rate, uint16_t speed_hz = AP_MOTORS_SPEED_DEFAULT) :
AP_MotorsMulticopter(loop_rate, speed_hz)
AP_MotorsMulticopter_test(uint16_t speed_hz = AP_MOTORS_SPEED_DEFAULT) :
AP_MotorsMulticopter(speed_hz)
{
};
@ -48,7 +48,7 @@ public:
};
AP_MotorsMulticopter_test motors{1};
AP_MotorsMulticopter_test motors;
/*
* rotation tests
@ -66,6 +66,7 @@ void setup(void)
float max_diff_expo = 0;
float expo = -1.0;
motors.set_dt(1);
while (expo < 1.0+expo_step*0.5) {
hal.console->printf("expo: %0.4f\n",expo);
motors.set_expo(expo);