mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-25 01:58:29 -04:00
AP_NavEKF: Fix one frame delay in processing yaw estimator velocity data
This commit is contained in:
parent
ed14ab84ce
commit
0ce4dd457d
@ -98,47 +98,7 @@ void EKFGSF_yaw::update(const Vector3f &delAng,
|
|||||||
predict(mdl_idx);
|
predict(mdl_idx);
|
||||||
}
|
}
|
||||||
|
|
||||||
// The 3-state EKF models only run when flying to avoid corrupted estimates due to operator handling and GPS interference
|
if (vel_fuse_running && !run_ekf_gsf) {
|
||||||
if (vel_data_updated && run_ekf_gsf) {
|
|
||||||
if (!vel_fuse_running) {
|
|
||||||
// Perform in-flight alignment
|
|
||||||
for (uint8_t mdl_idx = 0; mdl_idx < N_MODELS_EKFGSF; mdl_idx ++) {
|
|
||||||
// Use the firstGPS measurement to set the velocities and corresponding variances
|
|
||||||
EKF[mdl_idx].X[0] = vel_NE[0];
|
|
||||||
EKF[mdl_idx].X[1] = vel_NE[1];
|
|
||||||
EKF[mdl_idx].P[0][0] = sq(fmaxf(vel_accuracy, 0.5f));
|
|
||||||
EKF[mdl_idx].P[1][1] = EKF[mdl_idx].P[0][0];
|
|
||||||
}
|
|
||||||
alignYaw();
|
|
||||||
vel_fuse_running = true;
|
|
||||||
} else {
|
|
||||||
float total_w = 0.0f;
|
|
||||||
float newWeight[(uint8_t)N_MODELS_EKFGSF];
|
|
||||||
bool state_update_failed = false;
|
|
||||||
for (uint8_t mdl_idx = 0; mdl_idx < N_MODELS_EKFGSF; mdl_idx ++) {
|
|
||||||
// Update states and covariances using GPS NE velocity measurements fused as direct state observations
|
|
||||||
if (!correct(mdl_idx)) {
|
|
||||||
state_update_failed = true;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if (!state_update_failed) {
|
|
||||||
// Calculate weighting for each model assuming a normal error distribution
|
|
||||||
for (uint8_t mdl_idx = 0; mdl_idx < N_MODELS_EKFGSF; mdl_idx ++) {
|
|
||||||
newWeight[mdl_idx]= fmaxf(gaussianDensity(mdl_idx) * GSF.weights[mdl_idx], 0.0f);
|
|
||||||
total_w += newWeight[mdl_idx];
|
|
||||||
}
|
|
||||||
|
|
||||||
// Normalise the sum of weights to unity
|
|
||||||
if (vel_fuse_running && is_positive(total_w)) {
|
|
||||||
float total_w_inv = 1.0f / total_w;
|
|
||||||
for (uint8_t mdl_idx = 0; mdl_idx < N_MODELS_EKFGSF; mdl_idx ++) {
|
|
||||||
GSF.weights[mdl_idx] = newWeight[mdl_idx] * total_w_inv;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
} else if (vel_fuse_running && !run_ekf_gsf) {
|
|
||||||
// We have landed so reset EKF-GSF states and wait to fly again
|
// We have landed so reset EKF-GSF states and wait to fly again
|
||||||
// Do not reset the AHRS as it continues to run when on ground
|
// Do not reset the AHRS as it continues to run when on ground
|
||||||
initialise();
|
initialise();
|
||||||
@ -176,16 +136,55 @@ void EKFGSF_yaw::update(const Vector3f &delAng,
|
|||||||
float yawDelta = wrap_PI(EKF[mdl_idx].X[2] - GSF.yaw);
|
float yawDelta = wrap_PI(EKF[mdl_idx].X[2] - GSF.yaw);
|
||||||
GSF.yaw_variance += GSF.weights[mdl_idx] * (EKF[mdl_idx].P[2][2] + sq(yawDelta));
|
GSF.yaw_variance += GSF.weights[mdl_idx] * (EKF[mdl_idx].P[2][2] + sq(yawDelta));
|
||||||
}
|
}
|
||||||
|
|
||||||
// prevent the same velocity data being used again
|
|
||||||
vel_data_updated = false;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
void EKFGSF_yaw::pushVelData(Vector2f vel, float velAcc)
|
void EKFGSF_yaw::fuseVelData(Vector2f vel, float velAcc)
|
||||||
{
|
{
|
||||||
|
// set class variables
|
||||||
|
velObsVar = sq(fmaxf(velAcc, 0.5f));
|
||||||
vel_NE = vel;
|
vel_NE = vel;
|
||||||
vel_accuracy = velAcc;
|
|
||||||
vel_data_updated = true;
|
// The 3-state EKF models only run when flying to avoid corrupted estimates due to operator handling and GPS interference
|
||||||
|
if (run_ekf_gsf) {
|
||||||
|
if (!vel_fuse_running) {
|
||||||
|
// Perform in-flight alignment
|
||||||
|
for (uint8_t mdl_idx = 0; mdl_idx < N_MODELS_EKFGSF; mdl_idx ++) {
|
||||||
|
// Use the firstGPS measurement to set the velocities and corresponding variances
|
||||||
|
EKF[mdl_idx].X[0] = vel_NE[0];
|
||||||
|
EKF[mdl_idx].X[1] = vel_NE[1];
|
||||||
|
EKF[mdl_idx].P[0][0] = velObsVar;
|
||||||
|
EKF[mdl_idx].P[1][1] = velObsVar;
|
||||||
|
}
|
||||||
|
alignYaw();
|
||||||
|
vel_fuse_running = true;
|
||||||
|
} else {
|
||||||
|
float total_w = 0.0f;
|
||||||
|
float newWeight[(uint8_t)N_MODELS_EKFGSF];
|
||||||
|
bool state_update_failed = false;
|
||||||
|
for (uint8_t mdl_idx = 0; mdl_idx < N_MODELS_EKFGSF; mdl_idx ++) {
|
||||||
|
// Update states and covariances using GPS NE velocity measurements fused as direct state observations
|
||||||
|
if (!correct(mdl_idx)) {
|
||||||
|
state_update_failed = true;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (!state_update_failed) {
|
||||||
|
// Calculate weighting for each model assuming a normal error distribution
|
||||||
|
for (uint8_t mdl_idx = 0; mdl_idx < N_MODELS_EKFGSF; mdl_idx ++) {
|
||||||
|
newWeight[mdl_idx]= fmaxf(gaussianDensity(mdl_idx) * GSF.weights[mdl_idx], 0.0f);
|
||||||
|
total_w += newWeight[mdl_idx];
|
||||||
|
}
|
||||||
|
|
||||||
|
// Normalise the sum of weights to unity
|
||||||
|
if (vel_fuse_running && is_positive(total_w)) {
|
||||||
|
float total_w_inv = 1.0f / total_w;
|
||||||
|
for (uint8_t mdl_idx = 0; mdl_idx < N_MODELS_EKFGSF; mdl_idx ++) {
|
||||||
|
GSF.weights[mdl_idx] = newWeight[mdl_idx] * total_w_inv;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void EKFGSF_yaw::predictAHRS(const uint8_t mdl_idx)
|
void EKFGSF_yaw::predictAHRS(const uint8_t mdl_idx)
|
||||||
@ -386,9 +385,6 @@ void EKFGSF_yaw::predict(const uint8_t mdl_idx)
|
|||||||
// Returns false if the sttae and covariance correction failed
|
// Returns false if the sttae and covariance correction failed
|
||||||
bool EKFGSF_yaw::correct(const uint8_t mdl_idx)
|
bool EKFGSF_yaw::correct(const uint8_t mdl_idx)
|
||||||
{
|
{
|
||||||
// set observation variance from accuracy estimate supplied by GPS and apply a sanity check minimum
|
|
||||||
const float velObsVar = sq(fmaxf(vel_accuracy, 0.5f));
|
|
||||||
|
|
||||||
// calculate velocity observation innovations
|
// calculate velocity observation innovations
|
||||||
EKF[mdl_idx].innov[0] = EKF[mdl_idx].X[0] - vel_NE[0];
|
EKF[mdl_idx].innov[0] = EKF[mdl_idx].X[0] - vel_NE[0];
|
||||||
EKF[mdl_idx].innov[1] = EKF[mdl_idx].X[1] - vel_NE[1];
|
EKF[mdl_idx].innov[1] = EKF[mdl_idx].X[1] - vel_NE[1];
|
||||||
@ -539,7 +535,6 @@ void EKFGSF_yaw::initialise()
|
|||||||
{
|
{
|
||||||
memset(&GSF, 0, sizeof(GSF));
|
memset(&GSF, 0, sizeof(GSF));
|
||||||
vel_fuse_running = false;
|
vel_fuse_running = false;
|
||||||
vel_data_updated = false;
|
|
||||||
run_ekf_gsf = false;
|
run_ekf_gsf = false;
|
||||||
|
|
||||||
memset(&EKF, 0, sizeof(EKF));
|
memset(&EKF, 0, sizeof(EKF));
|
||||||
@ -554,8 +549,8 @@ void EKFGSF_yaw::initialise()
|
|||||||
// Take state and variance estimates direct from velocity sensor
|
// Take state and variance estimates direct from velocity sensor
|
||||||
EKF[mdl_idx].X[0] = vel_NE[0];
|
EKF[mdl_idx].X[0] = vel_NE[0];
|
||||||
EKF[mdl_idx].X[1] = vel_NE[1];
|
EKF[mdl_idx].X[1] = vel_NE[1];
|
||||||
EKF[mdl_idx].P[0][0] = sq(fmaxf(vel_accuracy, 0.5f));
|
EKF[mdl_idx].P[0][0] = velObsVar;
|
||||||
EKF[mdl_idx].P[1][1] = EKF[mdl_idx].P[0][0];
|
EKF[mdl_idx].P[1][1] = velObsVar;
|
||||||
|
|
||||||
// Use half yaw interval for yaw uncertainty as that is the maximum that the best model can be away from truth
|
// Use half yaw interval for yaw uncertainty as that is the maximum that the best model can be away from truth
|
||||||
GSF.yaw_variance = sq(0.5f * yaw_increment);
|
GSF.yaw_variance = sq(0.5f * yaw_increment);
|
||||||
|
@ -22,7 +22,9 @@ public:
|
|||||||
bool runEKF, // set to true when flying or movement suitable for yaw estimation
|
bool runEKF, // set to true when flying or movement suitable for yaw estimation
|
||||||
float TAS); // true airspeed used for centripetal accel compensation - set to 0 when not required.
|
float TAS); // true airspeed used for centripetal accel compensation - set to 0 when not required.
|
||||||
|
|
||||||
void pushVelData(Vector2f vel, // NE velocity measurement (m/s)
|
// Fuse NE velocty mesurements and update the EKF's and GSF state and covariance estimates
|
||||||
|
// Should be called after update(...) whenever new velocity data is available
|
||||||
|
void fuseVelData(Vector2f vel, // NE velocity measurement (m/s)
|
||||||
float velAcc); // 1-sigma accuracy of velocity measurement (m/s)
|
float velAcc); // 1-sigma accuracy of velocity measurement (m/s)
|
||||||
|
|
||||||
// get solution data for logging
|
// get solution data for logging
|
||||||
@ -100,10 +102,9 @@ private:
|
|||||||
};
|
};
|
||||||
EKF_struct EKF[N_MODELS_EKFGSF];
|
EKF_struct EKF[N_MODELS_EKFGSF];
|
||||||
bool vel_fuse_running; // true when the bank of EKF's has started fusing GPS velocity data
|
bool vel_fuse_running; // true when the bank of EKF's has started fusing GPS velocity data
|
||||||
bool vel_data_updated; // true when velocity data has been updated
|
|
||||||
bool run_ekf_gsf; // true when operating condition is suitable for to run the GSF and EKF models and fuse velocity data
|
bool run_ekf_gsf; // true when operating condition is suitable for to run the GSF and EKF models and fuse velocity data
|
||||||
Vector2f vel_NE; // NE velocity observations (m/s)
|
Vector2f vel_NE; // NE velocity observations (m/s)
|
||||||
float vel_accuracy; // 1-sigma accuracy of velocity observations (m/s)
|
float velObsVar; // variance of velocity observations (m/s)^2
|
||||||
|
|
||||||
// Initialises the EKF's and GSF states, but not the AHRS complementary filters
|
// Initialises the EKF's and GSF states, but not the AHRS complementary filters
|
||||||
void initialise();
|
void initialise();
|
||||||
|
Loading…
Reference in New Issue
Block a user