mirror of https://github.com/ArduPilot/ardupilot
AP_NavEKF: Change misnomer (NFC)
This commit is contained in:
parent
a5b6ce9220
commit
0536be1c88
|
@ -49,8 +49,8 @@ end
|
||||||
states(1:3) = 0;
|
states(1:3) = 0;
|
||||||
states = states - Kfusion * innovation;
|
states = states - Kfusion * innovation;
|
||||||
|
|
||||||
% the first 3 states represent the angular misalignment vector. This is
|
% the first 3 states represent the angular misalignment vector.
|
||||||
% is used to correct the estimate quaternion
|
% This is used to correct the estimate quaternion
|
||||||
% Convert the error rotation vector to its equivalent quaternion
|
% Convert the error rotation vector to its equivalent quaternion
|
||||||
% error = truth - estimate
|
% error = truth - estimate
|
||||||
rotationMag = sqrt(states(1)^2 + states(2)^2 + states(3)^2);
|
rotationMag = sqrt(states(1)^2 + states(2)^2 + states(3)^2);
|
||||||
|
|
|
@ -37,8 +37,8 @@ for obsIndex = 1:3
|
||||||
% Store tilt error estimate for external monitoring
|
% Store tilt error estimate for external monitoring
|
||||||
angErrVec = angErrVec + states(1:3);
|
angErrVec = angErrVec + states(1:3);
|
||||||
|
|
||||||
% the first 3 states represent the angular misalignment vector. This is
|
% the first 3 states represent the angular misalignment vector.
|
||||||
% is used to correct the estimated quaternion
|
% This is used to correct the estimated quaternion
|
||||||
% Convert the error rotation vector to its equivalent quaternion
|
% Convert the error rotation vector to its equivalent quaternion
|
||||||
% truth = estimate + error
|
% truth = estimate + error
|
||||||
rotationMag = sqrt(states(1)^2 + states(2)^2 + states(3)^2);
|
rotationMag = sqrt(states(1)^2 + states(2)^2 + states(3)^2);
|
||||||
|
|
|
@ -48,8 +48,8 @@ end
|
||||||
states(1:3) = 0;
|
states(1:3) = 0;
|
||||||
states = states - Kfusion * innovation;
|
states = states - Kfusion * innovation;
|
||||||
|
|
||||||
% the first 3 states represent the angular misalignment vector. This is
|
% the first 3 states represent the angular misalignment vector.
|
||||||
% is used to correct the estimate quaternion
|
% This is used to correct the estimate quaternion
|
||||||
% Convert the error rotation vector to its equivalent quaternion
|
% Convert the error rotation vector to its equivalent quaternion
|
||||||
% error = truth - estimate
|
% error = truth - estimate
|
||||||
rotationMag = sqrt(states(1)^2 + states(2)^2 + states(3)^2);
|
rotationMag = sqrt(states(1)^2 + states(2)^2 + states(3)^2);
|
||||||
|
|
|
@ -37,8 +37,8 @@ for obsIndex = 1:3
|
||||||
% Store tilt error estimate for external monitoring
|
% Store tilt error estimate for external monitoring
|
||||||
angErrVec = angErrVec + states(1:3);
|
angErrVec = angErrVec + states(1:3);
|
||||||
|
|
||||||
% the first 3 states represent the angular misalignment vector. This is
|
% the first 3 states represent the angular misalignment vector.
|
||||||
% is used to correct the estimated quaternion
|
% This is used to correct the estimated quaternion
|
||||||
% Convert the error rotation vector to its equivalent quaternion
|
% Convert the error rotation vector to its equivalent quaternion
|
||||||
% truth = estimate + error
|
% truth = estimate + error
|
||||||
rotationMag = sqrt(states(1)^2 + states(2)^2 + states(3)^2);
|
rotationMag = sqrt(states(1)^2 + states(2)^2 + states(3)^2);
|
||||||
|
|
Loading…
Reference in New Issue