VibTest: added gyro data and support 3 sensors

will be used for vibration testing on FMUv3
This commit is contained in:
Andrew Tridgell 2014-07-08 10:07:58 +10:00
parent 8e0f3c152a
commit 03770c4d34

View File

@ -28,6 +28,7 @@
#include <AP_Vehicle.h>
#include <AP_ADC_AnalogSource.h>
#include <AP_Compass.h>
#include <AP_Scheduler.h>
#include <AP_Declination.h>
#include <AP_Notify.h>
#include <AP_NavEKF.h>
@ -43,45 +44,70 @@
const AP_HAL::HAL& hal = AP_HAL_BOARD_DRIVER;
#define NUM_ACCELS 2
static int accel_fd[NUM_ACCELS];
static uint32_t total_samples[NUM_ACCELS];
static uint64_t last_accel_timestamp[NUM_ACCELS];
static int accel_fd[INS_MAX_INSTANCES];
static int gyro_fd[INS_MAX_INSTANCES];
static uint32_t total_samples[INS_MAX_INSTANCES];
static uint64_t last_accel_timestamp[INS_MAX_INSTANCES];
static uint64_t last_gyro_timestamp[INS_MAX_INSTANCES];
static DataFlash_File DataFlash("/fs/microsd/VIBTEST");
#define LOG_ACCEL0_MSG 215
#define LOG_ACC1_MSG 215
#define LOG_GYR1_MSG 225
struct PACKED log_Accel {
struct PACKED log_ACCEL {
LOG_PACKET_HEADER;
uint32_t timestamp;
float X, Y, Z;
uint32_t timestamp_us;
float AccX, AccY, AccZ;
};
struct PACKED log_GYRO {
LOG_PACKET_HEADER;
uint32_t timestamp;
uint32_t timestamp_us;
float GyrX, GyrY, GyrZ;
};
static const struct LogStructure log_structure[] PROGMEM = {
LOG_COMMON_STRUCTURES,
{ LOG_ACCEL0_MSG, sizeof(log_Accel),
"ACC0", "Ifff", "TimeUS,X,Y,Z" },
{ LOG_ACCEL0_MSG+1, sizeof(log_Accel),
"ACC1", "Ifff", "TimeUS,X,Y,Z" }
{ LOG_ACC1_MSG, sizeof(log_ACCEL),
"ACC1", "IIfff", "TimeMS,TimeUS,AccX,AccY,AccZ" },
{ LOG_ACC1_MSG+1, sizeof(log_ACCEL),
"ACC2", "IIfff", "TimeMS,TimeUS,AccX,AccY,AccZ" },
{ LOG_ACC1_MSG+2, sizeof(log_ACCEL),
"ACC3", "IIfff", "TimeMS,TimeUS,AccX,AccY,AccZ" },
{ LOG_GYR1_MSG, sizeof(log_GYRO),
"GYR1", "IIfff", "TimeMS,TimeUS,GyrX,GyrY,GyrZ" },
{ LOG_GYR1_MSG+1, sizeof(log_GYRO),
"GYR2", "IIfff", "TimeMS,TimeUS,GyrX,GyrY,GyrZ" },
{ LOG_GYR1_MSG+2, sizeof(log_GYRO),
"GYR3", "IIfff", "TimeMS,TimeUS,GyrX,GyrY,GyrZ" }
};
void setup(void)
{
accel_fd[0] = open(ACCEL_DEVICE_PATH, O_RDONLY);
accel_fd[1] = open(ACCEL_DEVICE_PATH "1", O_RDONLY);
for (uint8_t i=0; i<INS_MAX_INSTANCES; i++) {
char accel_path[] = ACCEL_DEVICE_PATH "n";
char gyro_path[] = GYRO_DEVICE_PATH "n";
accel_path[strlen(accel_path)-1] = (i==0?0:'1'+(i-1));
gyro_path[strlen(gyro_path)-1] = (i==0?0:'1'+(i-1));
accel_fd[i] = open(accel_path, O_RDONLY);
gyro_fd[i] = open(gyro_path, O_RDONLY);
}
if (accel_fd[0] == -1 || gyro_fd[-1] == -1) {
hal.scheduler->panic("Failed to open accel/gyro 0");
}
for (uint8_t i=0; i<NUM_ACCELS; i++) {
if (accel_fd[i] == -1) {
hal.console->printf("Failed to open accel[%u]\n", (unsigned)i);
hal.scheduler->panic("Failed to open accel");
}
for (uint8_t i=0; i<INS_MAX_INSTANCES; i++) {
// disable software filtering
ioctl(accel_fd[i], ACCELIOCSLOWPASS, 0);
// max queue depth
ioctl(accel_fd[i], SENSORIOCSQUEUEDEPTH, 100);
if (accel_fd[i] != -1) {
ioctl(accel_fd[i], ACCELIOCSLOWPASS, 0);
ioctl(accel_fd[i], SENSORIOCSQUEUEDEPTH, 100);
}
if (gyro_fd[i] != -1) {
ioctl(gyro_fd[i], GYROIOCSLOWPASS, 0);
ioctl(gyro_fd[i], SENSORIOCSQUEUEDEPTH, 100);
}
}
DataFlash.Init(log_structure, sizeof(log_structure)/sizeof(log_structure[0]));
@ -90,30 +116,56 @@ void setup(void)
void loop(void)
{
for (uint8_t i=0; i<NUM_ACCELS; i++) {
struct accel_report accel_report;
while (::read(accel_fd[i], &accel_report, sizeof(accel_report)) ==
sizeof(accel_report) &&
accel_report.timestamp != last_accel_timestamp[i]) {
last_accel_timestamp[i] = accel_report.timestamp;
bool got_sample = false;
do {
got_sample = false;
for (uint8_t i=0; i<INS_MAX_INSTANCES; i++) {
struct accel_report accel_report;
struct gyro_report gyro_report;
if (accel_fd[i] != -1 && ::read(accel_fd[i], &accel_report, sizeof(accel_report)) ==
sizeof(accel_report) &&
accel_report.timestamp != last_accel_timestamp[i]) {
last_accel_timestamp[i] = accel_report.timestamp;
struct log_Accel pkt = {
LOG_PACKET_HEADER_INIT((uint8_t)(LOG_ACCEL0_MSG+i)),
timestamp : (uint32_t)accel_report.timestamp,
X : accel_report.x,
Y : accel_report.y,
Z : accel_report.z
};
DataFlash.WriteBlock(&pkt, sizeof(pkt));
total_samples[i]++;
if (total_samples[i] % 2000 == 0) {
hal.console->printf("t=%lu total_samples=%lu/%lu\n",
hal.scheduler->millis(),
total_samples[0], total_samples[1]);
struct log_ACCEL pkt = {
LOG_PACKET_HEADER_INIT((uint8_t)(LOG_ACC1_MSG+i)),
timestamp : (uint32_t)(accel_report.timestamp/1000),
timestamp_us : (uint32_t)accel_report.timestamp,
AccX : accel_report.x,
AccY : accel_report.y,
AccZ : accel_report.z
};
DataFlash.WriteBlock(&pkt, sizeof(pkt));
got_sample = true;
}
if (gyro_fd[i] != -1 && ::read(gyro_fd[i], &gyro_report, sizeof(gyro_report)) ==
sizeof(gyro_report) &&
gyro_report.timestamp != last_gyro_timestamp[i]) {
last_gyro_timestamp[i] = gyro_report.timestamp;
struct log_GYRO pkt = {
LOG_PACKET_HEADER_INIT((uint8_t)(LOG_GYR1_MSG+i)),
timestamp : (uint32_t)(accel_report.timestamp/1000),
timestamp_us : (uint32_t)accel_report.timestamp,
GyrX : gyro_report.x,
GyrY : gyro_report.y,
GyrZ : gyro_report.z
};
DataFlash.WriteBlock(&pkt, sizeof(pkt));
got_sample = true;
}
if (got_sample) {
total_samples[i]++;
if (total_samples[i] % 2000 == 0) {
hal.console->printf("t=%lu total_samples=%lu/%lu/%lu\n",
hal.scheduler->millis(),
total_samples[0], total_samples[1],total_samples[2]);
}
}
}
}
hal.scheduler->delay(1);
} while (got_sample);
hal.scheduler->delay_microseconds(200);
}
#else