Added battery monitoring, arming to apo.

Arming added for quadrotor. Need to add to rover still. Battery
monitoring added with auto shut-off in quadrotor controller.
Finally split apo header and source files to allow faster
compiling/ fix cyclic header inclusions.
This commit is contained in:
James Goppert 2011-10-16 02:55:34 -04:00
parent 015c4830ca
commit 0283b8c695
17 changed files with 1554 additions and 1320 deletions

View File

@ -9,6 +9,7 @@
#define CONTROLLERQUAD_H_
#include "../APO/AP_Controller.h"
#include "../APO/AP_BatteryMonitor.h"
namespace apo {
@ -61,22 +62,24 @@ public:
AP_Controller(nav, guide, hal),
pidRoll(new AP_Var_group(k_pidRoll, PSTR("ROLL_")), 1,
PID_ATT_P, PID_ATT_I, PID_ATT_D, PID_ATT_AWU,
PID_ATT_LIM),
PID_ATT_LIM, PID_ATT_DFCUT),
pidPitch(new AP_Var_group(k_pidPitch, PSTR("PITCH_")), 1,
PID_ATT_P, PID_ATT_I, PID_ATT_D, PID_ATT_AWU,
PID_ATT_LIM),
PID_ATT_LIM, PID_ATT_DFCUT),
pidYaw(new AP_Var_group(k_pidYaw, PSTR("YAW_")), 1,
PID_YAWPOS_P, PID_YAWPOS_I, PID_YAWPOS_D,
PID_YAWPOS_AWU, PID_YAWPOS_LIM),
PID_YAWPOS_AWU, PID_YAWPOS_LIM, PID_ATT_DFCUT),
pidYawRate(new AP_Var_group(k_pidYawRate, PSTR("YAWRT_")), 1,
PID_YAWSPEED_P, PID_YAWSPEED_I, PID_YAWSPEED_D,
PID_YAWSPEED_AWU, PID_YAWSPEED_LIM, PID_YAWSPEED_DFCUT),
pidPN(new AP_Var_group(k_pidPN, PSTR("NORTH_")), 1, PID_POS_P,
PID_POS_I, PID_POS_D, PID_POS_AWU, PID_POS_LIM),
PID_POS_I, PID_POS_D, PID_POS_AWU, PID_POS_LIM, PID_POS_DFCUT),
pidPE(new AP_Var_group(k_pidPE, PSTR("EAST_")), 1, PID_POS_P,
PID_POS_I, PID_POS_D, PID_POS_AWU, PID_POS_LIM),
PID_POS_I, PID_POS_D, PID_POS_AWU, PID_POS_LIM, PID_POS_DFCUT),
pidPD(new AP_Var_group(k_pidPD, PSTR("DOWN_")), 1, PID_POS_Z_P,
PID_POS_Z_I, PID_POS_Z_D, PID_POS_Z_AWU, PID_POS_Z_LIM) {
PID_POS_Z_I, PID_POS_Z_D, PID_POS_Z_AWU, PID_POS_Z_LIM, PID_POS_DFCUT),
_armingClock(0), _thrustMix(0), _pitchMix(0), _rollMix(0), _yawMix(0),
_cmdRoll(0), _cmdPitch(0), _cmdYawRate(0), _mode(MAV_MODE_LOCKED) {
/*
* allocate radio channels
* the order of the channels has to match the enumeration above
@ -112,138 +115,203 @@ public:
}
virtual void update(const float & dt) {
//_hal->debug->printf_P(PSTR("thr: %f, yaw: %f\n"),_hal->rc[CH_THRUST]->getRadioPosition(),_hal->rc[CH_YAW]->getRadioPosition());
// check for heartbeat
// arming
//
// to arm: put stick to bottom right for 100 controller cycles
// (max yaw, min throttle)
//
// didn't use clock here in case of millis() roll over
// for long runs
if ( (_hal->getState() != MAV_STATE_ACTIVE) &
(_hal->rc[CH_THRUST]->getRadioPosition() < 0.1) &&
(_hal->rc[CH_YAW]->getRadioPosition() < -0.9) ) {
// always start clock at 0
if (_armingClock<0) _armingClock = 0;
if (_armingClock++ >= 100) {
_hal->gcs->sendText(SEVERITY_HIGH, PSTR("armed"));
_hal->setState(MAV_STATE_ACTIVE);
} else {
_hal->gcs->sendText(SEVERITY_HIGH, PSTR("arming"));
}
}
// disarming
//
// to disarm: put stick to bottom left for 100 controller cycles
// (min yaw, min throttle)
else if ( (_hal->getState() == MAV_STATE_ACTIVE) &
(_hal->rc[CH_THRUST]->getRadioPosition() < 0.1) &&
(_hal->rc[CH_YAW]->getRadioPosition() > 0.9) ) {
// always start clock at 0
if (_armingClock>0) _armingClock = 0;
if (_armingClock-- <= -100) {
_hal->gcs->sendText(SEVERITY_HIGH, PSTR("disarmed"));
_hal->setState(MAV_STATE_STANDBY);
} else {
_hal->gcs->sendText(SEVERITY_HIGH, PSTR("disarming"));
}
}
// reset arming clock and report status
else if (_armingClock != 0) {
_armingClock = 0;
if (_hal->getState()==MAV_STATE_ACTIVE) _hal->gcs->sendText(SEVERITY_HIGH, PSTR("armed"));
else if (_hal->getState()!=MAV_STATE_ACTIVE) _hal->gcs->sendText(SEVERITY_HIGH, PSTR("disarmed"));
}
// determine flight mode
//
// check for heartbeat from gcs, if not found go to failsafe
if (_hal->heartBeatLost()) {
_mode = MAV_MODE_FAILSAFE;
setAllRadioChannelsToNeutral();
_hal->setState(MAV_STATE_EMERGENCY);
_hal->debug->printf_P(PSTR("comm lost, send heartbeat from gcs\n"));
return;
// if throttle less than 5% cut motor power
} else if (_hal->rc[CH_THRUST]->getRadioPosition() < 0.05) {
_mode = MAV_MODE_LOCKED;
setAllRadioChannelsToNeutral();
_hal->setState(MAV_STATE_STANDBY);
return;
// if in live mode then set state to active
} else if (_hal->getMode() == MODE_LIVE) {
_hal->setState(MAV_STATE_ACTIVE);
// if in hardware in the loop (control) mode, set to hilsim
} else if (_hal->getMode() == MODE_HIL_CNTL) {
_hal->setState(MAV_STATE_HILSIM);
}
// manual mode
if (_hal->rc[CH_MODE]->getRadioPosition() > 0) {
_mode = MAV_MODE_MANUAL;
_hal->gcs->sendText(SEVERITY_HIGH, PSTR("configure gcs to send heartbeat"));
// if battery less than 5%, go to failsafe
} else if (_hal->batteryMonitor->getPercentage() < 5) {
_mode = MAV_MODE_FAILSAFE;
_hal->gcs->sendText(SEVERITY_HIGH, PSTR("recharge battery"));
// manual/auto switch
} else {
_mode = MAV_MODE_AUTO;
// if all emergencies cleared, fall back to standby
if (_hal->getState()==MAV_STATE_EMERGENCY) _hal->setState(MAV_STATE_STANDBY);
if (_hal->rc[CH_MODE]->getRadioPosition() > 0) _mode = MAV_MODE_MANUAL;
else _mode = MAV_MODE_AUTO;
}
// commands for inner loop
float cmdRoll = 0;
float cmdPitch = 0;
float cmdYawRate = 0;
float thrustMix = 0;
// handle flight modes
switch(_mode) {
case MAV_MODE_LOCKED: {
_hal->setState(MAV_STATE_STANDBY);
break;
}
case MAV_MODE_FAILSAFE: {
_hal->setState(MAV_STATE_EMERGENCY);
break;
}
case MAV_MODE_MANUAL: {
setAllRadioChannelsManually();
// "mix manual"
cmdRoll = -0.5 * _hal->rc[CH_ROLL]->getPosition();
cmdPitch = -0.5 * _hal->rc[CH_PITCH]->getPosition();
cmdYawRate = -1 * _hal->rc[CH_YAW]->getPosition();
thrustMix = _hal->rc[CH_THRUST]->getPosition();
manualPositionLoop();
autoAttitudeLoop(dt);
break;
}
case MAV_MODE_AUTO: {
// until position loop is tested just
// go to standby
_hal->setState(MAV_STATE_STANDBY);
// XXX kills all commands,
// auto not currently implemented
setAllRadioChannelsToNeutral();
//attitudeLoop();
// XXX autoPositionLoop NOT TESTED, don't uncomment yet
//autoPositionLoop(dt);
//autoAttitudeLoop(dt);
break;
}
// position loop
/*
default: {
_hal->gcs->sendText(SEVERITY_HIGH, PSTR("unknown mode"));
_hal->setState(MAV_STATE_EMERGENCY);
}
}
// this sends commands to motors
setMotors();
}
virtual MAV_MODE getMode() {
return (MAV_MODE) _mode.get();
}
private:
AP_Uint8 _mode;
BlockPIDDfb pidRoll, pidPitch, pidYaw;
BlockPID pidYawRate;
BlockPIDDfb pidPN, pidPE, pidPD;
int32_t _armingClock;
float _thrustMix, _pitchMix, _rollMix, _yawMix;
float _cmdRoll, _cmdPitch, _cmdYawRate;
void manualPositionLoop() {
setAllRadioChannelsManually();
_cmdRoll = -0.5 * _hal->rc[CH_ROLL]->getPosition();
_cmdPitch = -0.5 * _hal->rc[CH_PITCH]->getPosition();
_cmdYawRate = -1 * _hal->rc[CH_YAW]->getPosition();
_thrustMix = _hal->rc[CH_THRUST]->getPosition();
}
void autoPositionLoop(float dt) {
float cmdNorthTilt = pidPN.update(_nav->getPN(),_nav->getVN(),dt);
float cmdEastTilt = pidPE.update(_nav->getPE(),_nav->getVE(),dt);
float cmdDown = pidPD.update(_nav->getPD(),_nav->getVD(),dt);
// "transform-to-body"
{
float trigSin = sin(-yaw);
float trigCos = cos(-yaw);
_cmdPitch = _cmdEastTilt * trigCos
- _cmdNorthTilt * trigSin;
_cmdRoll = -_cmdEastTilt * trigSin
+ _cmdNorthTilt * trigCos;
float trigSin = sin(-_nav->getYaw());
float trigCos = cos(-_nav->getYaw());
_cmdPitch = cmdEastTilt * trigCos - cmdNorthTilt * trigSin;
_cmdRoll = -cmdEastTilt * trigSin + cmdNorthTilt * trigCos;
// note that the north tilt is negative of the pitch
}
_cmdYawRate = 0;
//thrustMix += THRUST_HOVER_OFFSET;
_thrustMix = THRUST_HOVER_OFFSET + cmdDown;
// "thrust-trim-adjust"
if (fabs(_cmdRoll) > 0.5) {
_thrustMix *= 1.13949393;
} else {
_thrustMix /= cos(_cmdRoll);
}
if (fabs(_cmdPitch) > 0.5) {
_thrustMix *= 1.13949393;
} else {
_thrustMix /= cos(_cmdPitch);
}
*/
if (fabs(_cmdRoll) > 0.5) _thrustMix *= 1.13949393;
else _thrustMix /= cos(_cmdRoll);
if (fabs(_cmdPitch) > 0.5) _thrustMix *= 1.13949393;
else _thrustMix /= cos(_cmdPitch);
}
}
// attitude loop
float rollMix = pidRoll.update(cmdRoll - _nav->getRoll(),
void autoAttitudeLoop(float dt) {
_rollMix = pidRoll.update(_cmdRoll - _nav->getRoll(),
_nav->getRollRate(), dt);
float pitchMix = pidPitch.update(cmdPitch - _nav->getPitch(),
_pitchMix = pidPitch.update(_cmdPitch - _nav->getPitch(),
_nav->getPitchRate(), dt);
float yawMix = pidYawRate.update(cmdYawRate - _nav->getYawRate(), dt);
_hal->rc[CH_RIGHT]->setPosition(thrustMix - rollMix + yawMix);
_hal->rc[CH_LEFT]->setPosition(thrustMix + rollMix + yawMix);
_hal->rc[CH_FRONT]->setPosition(thrustMix + pitchMix - yawMix);
_hal->rc[CH_BACK]->setPosition(thrustMix - pitchMix - yawMix);
//_hal->debug->printf("R: %f\t L: %f\t F: %f\t B: %f\n",
//_hal->rc[CH_RIGHT]->getPosition(),
//_hal->rc[CH_LEFT]->getPosition(),
//_hal->rc[CH_FRONT]->getPosition(),
//_hal->rc[CH_BACK]->getPosition());
//_hal->debug->printf(
// "rollMix: %f\t pitchMix: %f\t yawMix: %f\t thrustMix: %f\n",
// rollMix, pitchMix, yawMix, thrustMix);
//_hal->debug->printf("cmdRoll: %f\t roll: %f\t rollMix: %f\n",
// cmdRoll, _nav->getRoll(), rollMix);
//_hal->debug->printf("cmdPitch: %f\t pitch: %f\t pitchMix: %f\n",
// cmdPitch, _nav->getPitch(), pitchMix);
//_hal->debug->printf("cmdYawRate: %f\t yawRate: %f\t yawMix: %f\n",
// cmdYawRate, _nav->getYawRate(), yawMix);
//_hal->debug->printf("roll pwm: %d\t pitch pwm: %d\t yaw pwm: %d\t thrust pwm: %d\n",
//_hal->rc[CH_ROLL]->getRadioPwm(),
//_hal->rc[CH_PITCH]->getRadioPwm(),
//_hal->rc[CH_YAW]->getRadioPwm(),
//_hal->rc[CH_THRUST]->getRadioPwm());
_yawMix = pidYawRate.update(_cmdYawRate - _nav->getYawRate(), dt);
}
virtual MAV_MODE getMode() {
return (MAV_MODE) _mode.get();
}
private:
AP_Uint8 _mode;
BlockPIDDfb pidRoll, pidPitch, pidYaw;
BlockPID pidYawRate;
BlockPIDDfb pidPN, pidPE, pidPD;
void setMotors() {
switch (_hal->getState()) {
case MAV_STATE_ACTIVE: {
digitalWrite(_hal->aLedPin, HIGH);
// turn all motors off if below 0.1 throttle
if (_hal->rc[CH_THRUST]->getRadioPosition() < 0.1) {
setAllRadioChannelsToNeutral();
} else {
_hal->rc[CH_RIGHT]->setPosition(_thrustMix - _rollMix + _yawMix);
_hal->rc[CH_LEFT]->setPosition(_thrustMix + _rollMix + _yawMix);
_hal->rc[CH_FRONT]->setPosition(_thrustMix + _pitchMix - _yawMix);
_hal->rc[CH_BACK]->setPosition(_thrustMix - _pitchMix - _yawMix);
}
break;
}
case MAV_STATE_EMERGENCY: {
digitalWrite(_hal->aLedPin, LOW);
setAllRadioChannelsToNeutral();
break;
}
case MAV_STATE_STANDBY: {
digitalWrite(_hal->aLedPin,LOW);
setAllRadioChannelsToNeutral();
break;
}
default: {
digitalWrite(_hal->aLedPin, LOW);
setAllRadioChannelsToNeutral();
}
}
}
};
} // namespace apo

View File

@ -39,6 +39,13 @@ static const bool compassEnabled = true;
static const Matrix3f compassOrientation = AP_COMPASS_COMPONENTS_UP_PINS_FORWARD;
// compass orientation: See AP_Compass_HMC5843.h for possible values
// battery monitoring
static const bool batteryMonitorEnabled = true;
static const uint8_t batteryPin = 0;
static const float batteryVoltageDivRatio = 6;
static const float batteryMinVolt = 10.0;
static const float batteryMaxVolt = 12.4;
static const bool rangeFinderFrontEnabled = false;
static const bool rangeFinderBackEnabled = false;
static const bool rangeFinderLeftEnabled = false;
@ -47,11 +54,11 @@ static const bool rangeFinderUpEnabled = false;
static const bool rangeFinderDownEnabled = false;
// loop rates
static const float loop0Rate = 200; // attitude nav
static const float loop1Rate = 50; // controller
static const float loop2Rate = 10; // pos nav/ gcs fast
static const float loop3Rate = 1; // gcs slow
static const float loop4Rate = 0.1;
static const float loopRate = 150; // attitude nav
static const float loop0Rate = 50; // controller
static const float loop1Rate = 5; // pos nav/ gcs fast
static const float loop2Rate = 1; // gcs slow
static const float loop3Rate = 0.1;
// position control loop
static const float PID_POS_P = 0;
@ -64,13 +71,15 @@ static const float PID_POS_Z_I = 0;
static const float PID_POS_Z_D = 0;
static const float PID_POS_Z_LIM = 0;
static const float PID_POS_Z_AWU = 0;
static const float PID_POS_DFCUT = 10; // cut derivative feedback at 10 hz
// attitude control loop
static const float PID_ATT_P = 0.3;
static const float PID_ATT_P = 0.17;
static const float PID_ATT_I = 0.5;
static const float PID_ATT_D = 0.08;
static const float PID_ATT_LIM = 0.1; // 10 %
static const float PID_ATT_AWU = 0.03; // 3 %
static const float PID_ATT_D = 0.06;
static const float PID_ATT_LIM = 0.05; // 10 %
static const float PID_ATT_AWU = 0.005; // 0.5 %
static const float PID_ATT_DFCUT = 25; // cut derivative feedback at 25 hz
static const float PID_YAWPOS_P = 0;
static const float PID_YAWPOS_I = 0;
static const float PID_YAWPOS_D = 0;

View File

@ -46,6 +46,10 @@ void setup() {
hal->adc = new ADC_CLASS;
hal->adc->Init();
if (batteryMonitorEnabled) {
hal->batteryMonitor = new AP_BatteryMonitor(batteryPin,batteryVoltageDivRatio,batteryMinVolt,batteryMaxVolt);
}
if (gpsEnabled) {
Serial1.begin(gpsBaud, 128, 16); // gps
hal->debug->println_P(PSTR("initializing gps"));
@ -167,7 +171,7 @@ void setup() {
hal->debug->printf_P(PSTR("free ram: %d bytes\n"),freeMemory());
autoPilot = new apo::AP_Autopilot(navigator, guide, controller, hal,
loop0Rate, loop1Rate, loop2Rate, loop3Rate);
loopRate, loop0Rate, loop1Rate, loop2Rate, loop3Rate);
}
void loop() {

View File

@ -6,6 +6,7 @@
*/
#include "AP_Autopilot.h"
#include "AP_BatteryMonitor.h"
namespace apo {
@ -13,16 +14,21 @@ class AP_HardwareAbstractionLayer;
AP_Autopilot::AP_Autopilot(AP_Navigator * navigator, AP_Guide * guide,
AP_Controller * controller, AP_HardwareAbstractionLayer * hal,
float loop0Rate, float loop1Rate, float loop2Rate, float loop3Rate) :
Loop(loop0Rate, callback0, this), _navigator(navigator), _guide(guide),
_controller(controller), _hal(hal), _loop0Rate(loop0Rate),
_loop1Rate(loop1Rate), _loop2Rate(loop2Rate), _loop3Rate(loop3Rate),
_loop4Rate(loop3Rate), callback0Calls(0), clockInit(millis()) {
float loopRate, float loop0Rate, float loop1Rate, float loop2Rate, float loop3Rate) :
Loop(loopRate, callback, this), _navigator(navigator), _guide(guide),
_controller(controller), _hal(hal),
callbackCalls(0) {
hal->setState(MAV_STATE_BOOT);
hal->gcs->sendMessage(MAVLINK_MSG_ID_HEARTBEAT);
hal->gcs->sendMessage(MAVLINK_MSG_ID_SYS_STATUS);
/*
* Radio setup
*/
hal->debug->println_P(PSTR("initializing radio"));
APM_RC.Init(); // APM Radio initialization,
/*
* Calibration
*/
@ -69,7 +75,7 @@ AP_Autopilot::AP_Autopilot(AP_Navigator * navigator, AP_Guide * guide,
}
hal->debug->println_P(PSTR("waiting for hil packet"));
}
delay(1000);
delay(500);
}
AP_MavlinkCommand::home.setAlt(_navigator->getAlt());
@ -91,46 +97,31 @@ AP_Autopilot::AP_Autopilot(AP_Navigator * navigator, AP_Guide * guide,
* Attach loops
*/
hal->debug->println_P(PSTR("attaching loops"));
subLoops().push_back(new Loop(getLoopRate(1), callback1, this));
subLoops().push_back(new Loop(getLoopRate(2), callback2, this));
subLoops().push_back(new Loop(getLoopRate(3), callback3, this));
subLoops().push_back(new Loop(getLoopRate(4), callback4, this));
subLoops().push_back(new Loop(loop0Rate, callback0, this));
subLoops().push_back(new Loop(loop1Rate, callback1, this));
subLoops().push_back(new Loop(loop2Rate, callback2, this));
subLoops().push_back(new Loop(loop3Rate, callback3, this));
hal->debug->println_P(PSTR("running"));
hal->gcs->sendText(SEVERITY_LOW, PSTR("running"));
if (hal->getMode() == MODE_LIVE) {
hal->setState(MAV_STATE_ACTIVE);
} else {
hal->setState(MAV_STATE_HILSIM);
}
/*
* Radio setup
*/
hal->debug->println_P(PSTR("initializing radio"));
APM_RC.Init(); // APM Radio initialization,
// start this after control loop is running
clockInit = millis();
hal->setState(MAV_STATE_STANDBY);
}
void AP_Autopilot::callback0(void * data) {
void AP_Autopilot::callback(void * data) {
AP_Autopilot * apo = (AP_Autopilot *) data;
//apo->hal()->debug->println_P(PSTR("callback 0"));
//apo->hal()->debug->println_P(PSTR("callback"));
/*
* ahrs update
*/
apo->callback0Calls++;
apo->callbackCalls++;
if (apo->getNavigator())
apo->getNavigator()->updateFast(1.0 / apo->getLoopRate(0));
apo->getNavigator()->updateFast(apo->dt());
}
void AP_Autopilot::callback1(void * data) {
void AP_Autopilot::callback0(void * data) {
AP_Autopilot * apo = (AP_Autopilot *) data;
//apo->getHal()->debug->println_P(PSTR("callback 1"));
//apo->getHal()->debug->println_P(PSTR("callback 0"));
/*
* hardware in the loop
@ -145,7 +136,7 @@ void AP_Autopilot::callback1(void * data) {
*/
if (apo->getController()) {
//apo->getHal()->debug->println_P(PSTR("updating controller"));
apo->getController()->update(1. / apo->getLoopRate(1));
apo->getController()->update(apo->subLoops()[0]->dt());
}
/*
char msg[50];
@ -154,9 +145,9 @@ void AP_Autopilot::callback1(void * data) {
*/
}
void AP_Autopilot::callback2(void * data) {
void AP_Autopilot::callback1(void * data) {
AP_Autopilot * apo = (AP_Autopilot *) data;
//apo->getHal()->debug->println_P(PSTR("callback 2"));
//apo->getHal()->debug->println_P(PSTR("callback 1"));
/*
* update guidance laws
@ -171,7 +162,7 @@ void AP_Autopilot::callback2(void * data) {
* slow navigation loop update
*/
if (apo->getNavigator()) {
apo->getNavigator()->updateSlow(1.0 / apo->getLoopRate(2));
apo->getNavigator()->updateSlow(apo->subLoops()[1]->dt());
}
/*
@ -210,9 +201,9 @@ void AP_Autopilot::callback2(void * data) {
*/
}
void AP_Autopilot::callback3(void * data) {
void AP_Autopilot::callback2(void * data) {
AP_Autopilot * apo = (AP_Autopilot *) data;
//apo->getHal()->debug->println_P(PSTR("callback 3"));
//apo->getHal()->debug->println_P(PSTR("callback 2"));
/*
* send telemetry
@ -226,6 +217,11 @@ void AP_Autopilot::callback3(void * data) {
//apo->getHal()->gcs->sendMessage(MAVLINK_MSG_ID_SCALED_IMU);
}
/*
* update battery monitor
*/
if (apo->getHal()->batteryMonitor) apo->getHal()->batteryMonitor->update();
/*
* send heartbeat
*/
@ -235,10 +231,10 @@ void AP_Autopilot::callback3(void * data) {
* load/loop rate/ram debug
*/
apo->getHal()->load = apo->load();
apo->getHal()->debug->printf_P(PSTR("missed calls: %d\n"),uint16_t(millis()*apo->getLoopRate(0)/1000-apo->callback0Calls));
apo->getHal()->debug->printf_P(PSTR("callback calls: %d\n"),apo->callbackCalls);
apo->callbackCalls = 0;
apo->getHal()->debug->printf_P(PSTR("load: %d%%\trate: %f Hz\tfree ram: %d bytes\n"),
apo->load(),1.0/apo->dt(),freeMemory());
apo->getHal()->gcs->sendMessage(MAVLINK_MSG_ID_SYS_STATUS);
/*
@ -250,9 +246,9 @@ void AP_Autopilot::callback3(void * data) {
//apo->adc()->Ch(6), apo->adc()->Ch(7), apo->adc()->Ch(8));
}
void AP_Autopilot::callback4(void * data) {
void AP_Autopilot::callback3(void * data) {
//AP_Autopilot * apo = (AP_Autopilot *) data;
//apo->getHal()->debug->println_P(PSTR("callback 4"));
//apo->getHal()->debug->println_P(PSTR("callback 3"));
}
} // apo

View File

@ -70,7 +70,7 @@ public:
*/
AP_Autopilot(AP_Navigator * navigator, AP_Guide * guide,
AP_Controller * controller, AP_HardwareAbstractionLayer * hal,
float loop0Rate, float loop1Rate, float loop2Rate, float loop3Rate);
float loopRate, float loop0Rate, float loop1Rate, float loop2Rate, float loop3Rate);
/**
* Accessors
@ -88,68 +88,51 @@ public:
return _hal;
}
float getLoopRate(uint8_t i) {
switch(i) {
case 0: return _loop0Rate;
case 1: return _loop1Rate;
case 2: return _loop2Rate;
case 3: return _loop3Rate;
case 4: return _loop4Rate;
default: return 0;
}
}
/**
* Loop Monitoring
*/
uint32_t callback0Calls;
uint32_t clockInit;
uint32_t callbackCalls;
private:
/**
* Loop 0 Callbacks (fastest)
* Loop Callbacks (fastest)
* - inertial navigation
* @param data A void pointer used to pass the apo class
* so that the apo public interface may be accessed.
*/
static void callback(void * data);
/**
* Loop 0 Callbacks
* - control
* - compass reading
* @see callback
*/
static void callback0(void * data);
float _loop0Rate;
/**
* Loop 1 Callbacks
* - control
* - compass reading
* @see callback0
* - gps sensor fusion
* - compass sensor fusion
* @see callback
*/
static void callback1(void * data);
float _loop1Rate;
/**
* Loop 2 Callbacks
* - gps sensor fusion
* - compass sensor fusion
* @see callback0
* - slow messages
* @see callback
*/
static void callback2(void * data);
float _loop2Rate;
/**
* Loop 3 Callbacks
* - slow messages
* @see callback0
*/
static void callback3(void * data);
float _loop3Rate;
/**
* Loop 4 Callbacks
* - super slow messages
* - log writing
* @see callback0
* @see callback
*/
static void callback4(void * data);
float _loop4Rate;
static void callback3(void * data);
/**
* Components

View File

@ -0,0 +1,10 @@
/*
* AP_BatteryMonitor.cpp
*
*/
#include "AP_BatteryMonitor.h"
namespace apo {
} // apo

View File

@ -0,0 +1,51 @@
/*
* AP_BatteryMonitor.h
*
*/
#ifndef AP_BATTERYMONITOR_H_
#define AP_BATTERYMONITOR_H_
#include <inttypes.h>
#include <wiring.h>
namespace apo {
class AP_BatteryMonitor {
public:
AP_BatteryMonitor(uint8_t pin, float voltageDivRatio, float minVolt, float maxVolt) :
_pin(pin), _voltageDivRatio(voltageDivRatio),
_minVolt(minVolt), _maxVolt(maxVolt), _voltage(maxVolt) {
}
void update() {
// low pass filter on voltage
_voltage = _voltage*.9 + (analogRead(_pin)/255)*_voltageDivRatio*0.1;
}
/**
* Accessors
*/
float getVoltage() {
return _voltage;
}
uint8_t getPercentage() {
float norm = (_voltage-_minVolt)/(_maxVolt-_minVolt);
if (norm < 0) norm = 0;
else if (norm > 1) norm = 1;
return 100*norm;
}
private:
uint8_t _pin;
float _voltageDivRatio;
float _voltage;
float _minVolt;
float _maxVolt;
};
} // namespace apo
#endif /* AP_BATTERYMONITOR_H_ */

View File

@ -5,11 +5,717 @@
* Author: jgoppert
*/
#include "../FastSerial/FastSerial.h"
#include "AP_CommLink.h"
#include "AP_Navigator.h"
#include "AP_Guide.h"
#include "AP_Controller.h"
#include "AP_HardwareAbstractionLayer.h"
#include "AP_RcChannel.h"
#include "../AP_GPS/AP_GPS.h"
#include "../AP_Math/AP_Math.h"
#include "../AP_IMU/AP_IMU.h"
#include "../AP_Compass/AP_Compass.h"
#include "AP_BatteryMonitor.h"
namespace apo {
uint8_t MavlinkComm::_nChannels = 0;
uint8_t MavlinkComm::_paramNameLengthMax = 13;
AP_CommLink::AP_CommLink(FastSerial * link, AP_Navigator * navigator, AP_Guide * guide,
AP_Controller * controller, AP_HardwareAbstractionLayer * hal) :
_link(link), _navigator(navigator), _guide(guide),
_controller(controller), _hal(hal) {
}
MavlinkComm::MavlinkComm(FastSerial * link, AP_Navigator * nav, AP_Guide * guide,
AP_Controller * controller, AP_HardwareAbstractionLayer * hal) :
AP_CommLink(link, nav, guide, controller, hal),
// options
_useRelativeAlt(true),
// commands
_sendingCmds(false), _receivingCmds(false),
_cmdTimeLastSent(millis()), _cmdTimeLastReceived(millis()),
_cmdDestSysId(0), _cmdDestCompId(0), _cmdRequestIndex(0),
_cmdMax(30), _cmdNumberRequested(0),
// parameters
_parameterCount(0), _queuedParameter(NULL),
_queuedParameterIndex(0) {
switch (_nChannels) {
case 0:
mavlink_comm_0_port = link;
_channel = MAVLINK_COMM_0;
_nChannels++;
break;
case 1:
mavlink_comm_1_port = link;
_channel = MAVLINK_COMM_1;
_nChannels++;
break;
default:
// signal that number of channels exceeded
_channel = MAVLINK_COMM_3;
break;
}
}
void MavlinkComm::send() {
// if number of channels exceeded return
if (_channel == MAVLINK_COMM_3)
return;
}
void MavlinkComm::sendMessage(uint8_t id, uint32_t param) {
//_hal->debug->printf_P(PSTR("send message\n"));
// if number of channels exceeded return
if (_channel == MAVLINK_COMM_3)
return;
uint64_t timeStamp = micros();
switch (id) {
case MAVLINK_MSG_ID_HEARTBEAT: {
mavlink_msg_heartbeat_send(_channel, mavlink_system.type,
MAV_AUTOPILOT_ARDUPILOTMEGA);
break;
}
case MAVLINK_MSG_ID_ATTITUDE: {
mavlink_msg_attitude_send(_channel, timeStamp,
_navigator->getRoll(), _navigator->getPitch(),
_navigator->getYaw(), _navigator->getRollRate(),
_navigator->getPitchRate(), _navigator->getYawRate());
break;
}
case MAVLINK_MSG_ID_GLOBAL_POSITION: {
mavlink_msg_global_position_send(_channel, timeStamp,
_navigator->getLat() * rad2Deg,
_navigator->getLon() * rad2Deg, _navigator->getAlt(),
_navigator->getVN(), _navigator->getVE(),
_navigator->getVD());
break;
}
case MAVLINK_MSG_ID_GPS_RAW: {
mavlink_msg_gps_raw_send(_channel, timeStamp, _hal->gps->status(),
_navigator->getLat() * rad2Deg,
_navigator->getLon() * rad2Deg, _navigator->getAlt(), 0, 0,
_navigator->getGroundSpeed(),
_navigator->getYaw() * rad2Deg);
break;
}
/*
case MAVLINK_MSG_ID_GPS_RAW_INT: {
mavlink_msg_gps_raw_int_send(_channel,timeStamp,_hal->gps->status(),
_navigator->getLat_degInt(), _navigator->getLon_degInt(),_navigator->getAlt_intM(), 0,0,
_navigator->getGroundSpeed(),_navigator->getYaw()*rad2Deg);
break;
}
*/
case MAVLINK_MSG_ID_SCALED_IMU: {
/*
* accel/gyro debug
*/
/*
Vector3f accel = _hal->imu->get_accel();
Vector3f gyro = _hal->imu->get_gyro();
Serial.printf_P(PSTR("accel: %f %f %f gyro: %f %f %f\n"),
accel.x,accel.y,accel.z,gyro.x,gyro.y,gyro.z);
*/
Vector3f accel = _hal->imu->get_accel();
Vector3f gyro = _hal->imu->get_gyro();
mavlink_msg_raw_imu_send(_channel, timeStamp, 1000 * accel.x,
1000 * accel.y, 1000 * accel.z, 1000 * gyro.x,
1000 * gyro.y, 1000 * gyro.z, _hal->compass->mag_x,
_hal->compass->mag_y, _hal->compass->mag_z); // XXX THIS IS NOT SCALED FOR MAG
}
case MAVLINK_MSG_ID_RC_CHANNELS_SCALED: {
int16_t ch[8];
for (int i = 0; i < 8; i++)
ch[i] = 0;
for (uint8_t i = 0; i < 8 && i < _hal->rc.getSize(); i++) {
ch[i] = 10000 * _hal->rc[i]->getPosition();
//_hal->debug->printf_P(PSTR("ch: %d position: %d\n"),i,ch[i]);
}
mavlink_msg_rc_channels_scaled_send(_channel, ch[0], ch[1], ch[2],
ch[3], ch[4], ch[5], ch[6], ch[7], 255);
break;
}
case MAVLINK_MSG_ID_RC_CHANNELS_RAW: {
int16_t ch[8];
for (int i = 0; i < 8; i++)
ch[i] = 0;
for (uint8_t i = 0; i < 8 && i < _hal->rc.getSize(); i++)
ch[i] = _hal->rc[i]->getPwm();
mavlink_msg_rc_channels_raw_send(_channel, ch[0], ch[1], ch[2],
ch[3], ch[4], ch[5], ch[6], ch[7], 255);
break;
}
case MAVLINK_MSG_ID_SYS_STATUS: {
uint16_t batteryVoltage = 0; // (milli volts)
uint16_t batteryPercentage = 1000; // times 10
if (_hal->batteryMonitor) {
batteryPercentage = _hal->batteryMonitor->getPercentage()*10;
batteryVoltage = _hal->batteryMonitor->getVoltage()*1000;
}
mavlink_msg_sys_status_send(_channel, _controller->getMode(),
_guide->getMode(), _hal->getState(), _hal->load * 10,
batteryVoltage, batteryPercentage, _packetDrops);
break;
}
case MAVLINK_MSG_ID_WAYPOINT_ACK: {
sendText(SEVERITY_LOW, PSTR("waypoint ack"));
//mavlink_waypoint_ack_t packet;
uint8_t type = 0; // ok (0), error(1)
mavlink_msg_waypoint_ack_send(_channel, _cmdDestSysId,
_cmdDestCompId, type);
// turn off waypoint send
_receivingCmds = false;
break;
}
case MAVLINK_MSG_ID_WAYPOINT_CURRENT: {
mavlink_msg_waypoint_current_send(_channel,
_guide->getCurrentIndex());
break;
}
default: {
char msg[50];
sprintf(msg, "autopilot sending unknown command with id: %d", id);
sendText(SEVERITY_HIGH, msg);
}
} // switch
} // send message
void MavlinkComm::receive() {
//_hal->debug->printf_P(PSTR("receive\n"));
// if number of channels exceeded return
//
if (_channel == MAVLINK_COMM_3)
return;
// receive new packets
mavlink_message_t msg;
mavlink_status_t status;
status.packet_rx_drop_count = 0;
// process received bytes
while (comm_get_available(_channel)) {
uint8_t c = comm_receive_ch(_channel);
// Try to get a new message
if (mavlink_parse_char(_channel, c, &msg, &status))
_handleMessage(&msg);
}
// Update packet drops counter
_packetDrops += status.packet_rx_drop_count;
}
void MavlinkComm::sendText(uint8_t severity, const char *str) {
mavlink_msg_statustext_send(_channel, severity, (const int8_t*) str);
}
void MavlinkComm::sendText(uint8_t severity, const prog_char_t *str) {
mavlink_statustext_t m;
uint8_t i;
for (i = 0; i < sizeof(m.text); i++) {
m.text[i] = pgm_read_byte((const prog_char *) (str++));
}
if (i < sizeof(m.text))
m.text[i] = 0;
sendText(severity, (const char *) m.text);
}
void MavlinkComm::acknowledge(uint8_t id, uint8_t sum1, uint8_t sum2) {
}
/**
* sends parameters one at a time
*/
void MavlinkComm::sendParameters() {
//_hal->debug->printf_P(PSTR("send parameters\n"));
// Check to see if we are sending parameters
while (NULL != _queuedParameter) {
AP_Var *vp;
float value;
// copy the current parameter and prepare to move to the next
vp = _queuedParameter;
_queuedParameter = _queuedParameter->next();
// if the parameter can be cast to float, report it here and break out of the loop
value = vp->cast_to_float();
if (!isnan(value)) {
char paramName[_paramNameLengthMax];
vp->copy_name(paramName, sizeof(paramName));
mavlink_msg_param_value_send(_channel, (int8_t*) paramName,
value, _countParameters(), _queuedParameterIndex);
_queuedParameterIndex++;
break;
}
}
}
/**
* request commands one at a time
*/
void MavlinkComm::requestCmds() {
//_hal->debug->printf_P(PSTR("requesting commands\n"));
// request cmds one by one
if (_receivingCmds && _cmdRequestIndex <= _cmdNumberRequested) {
mavlink_msg_waypoint_request_send(_channel, _cmdDestSysId,
_cmdDestCompId, _cmdRequestIndex);
}
}
void MavlinkComm::_handleMessage(mavlink_message_t * msg) {
uint32_t timeStamp = micros();
switch (msg->msgid) {
_hal->debug->printf_P(PSTR("message received: %d"), msg->msgid);
case MAVLINK_MSG_ID_HEARTBEAT: {
mavlink_heartbeat_t packet;
mavlink_msg_heartbeat_decode(msg, &packet);
_hal->lastHeartBeat = micros();
break;
}
case MAVLINK_MSG_ID_GPS_RAW: {
// decode
mavlink_gps_raw_t packet;
mavlink_msg_gps_raw_decode(msg, &packet);
_navigator->setTimeStamp(timeStamp);
_navigator->setLat(packet.lat * deg2Rad);
_navigator->setLon(packet.lon * deg2Rad);
_navigator->setAlt(packet.alt);
_navigator->setYaw(packet.hdg * deg2Rad);
_navigator->setGroundSpeed(packet.v);
_navigator->setAirSpeed(packet.v);
//_hal->debug->printf_P(PSTR("received hil gps raw packet\n"));
/*
_hal->debug->printf_P(PSTR("received lat: %f deg\tlon: %f deg\talt: %f m\n"),
packet.lat,
packet.lon,
packet.alt);
*/
break;
}
case MAVLINK_MSG_ID_ATTITUDE: {
// decode
mavlink_attitude_t packet;
mavlink_msg_attitude_decode(msg, &packet);
// set dcm hil sensor
_navigator->setTimeStamp(timeStamp);
_navigator->setRoll(packet.roll);
_navigator->setPitch(packet.pitch);
_navigator->setYaw(packet.yaw);
_navigator->setRollRate(packet.rollspeed);
_navigator->setPitchRate(packet.pitchspeed);
_navigator->setYawRate(packet.yawspeed);
//_hal->debug->printf_P(PSTR("received hil attitude packet\n"));
break;
}
case MAVLINK_MSG_ID_ACTION: {
// decode
mavlink_action_t packet;
mavlink_msg_action_decode(msg, &packet);
if (_checkTarget(packet.target, packet.target_component))
break;
// do action
sendText(SEVERITY_LOW, PSTR("action received"));
switch (packet.action) {
case MAV_ACTION_STORAGE_READ:
AP_Var::load_all();
break;
case MAV_ACTION_STORAGE_WRITE:
AP_Var::save_all();
break;
case MAV_ACTION_CALIBRATE_RC:
case MAV_ACTION_CALIBRATE_GYRO:
case MAV_ACTION_CALIBRATE_MAG:
case MAV_ACTION_CALIBRATE_ACC:
case MAV_ACTION_CALIBRATE_PRESSURE:
case MAV_ACTION_REBOOT:
case MAV_ACTION_REC_START:
case MAV_ACTION_REC_PAUSE:
case MAV_ACTION_REC_STOP:
case MAV_ACTION_TAKEOFF:
case MAV_ACTION_LAND:
case MAV_ACTION_NAVIGATE:
case MAV_ACTION_LOITER:
case MAV_ACTION_MOTORS_START:
case MAV_ACTION_CONFIRM_KILL:
case MAV_ACTION_EMCY_KILL:
case MAV_ACTION_MOTORS_STOP:
case MAV_ACTION_SHUTDOWN:
case MAV_ACTION_CONTINUE:
case MAV_ACTION_SET_MANUAL:
case MAV_ACTION_SET_AUTO:
case MAV_ACTION_LAUNCH:
case MAV_ACTION_RETURN:
case MAV_ACTION_EMCY_LAND:
case MAV_ACTION_HALT:
sendText(SEVERITY_LOW, PSTR("action not implemented"));
break;
default:
sendText(SEVERITY_LOW, PSTR("unknown action"));
break;
}
break;
}
case MAVLINK_MSG_ID_WAYPOINT_REQUEST_LIST: {
sendText(SEVERITY_LOW, PSTR("waypoint request list"));
// decode
mavlink_waypoint_request_list_t packet;
mavlink_msg_waypoint_request_list_decode(msg, &packet);
if (_checkTarget(packet.target_system, packet.target_component))
break;
// Start sending waypoints
mavlink_msg_waypoint_count_send(_channel, msg->sysid, msg->compid,
_guide->getNumberOfCommands());
_cmdTimeLastSent = millis();
_cmdTimeLastReceived = millis();
_sendingCmds = true;
_receivingCmds = false;
_cmdDestSysId = msg->sysid;
_cmdDestCompId = msg->compid;
break;
}
case MAVLINK_MSG_ID_WAYPOINT_REQUEST: {
sendText(SEVERITY_LOW, PSTR("waypoint request"));
// Check if sending waypiont
if (!_sendingCmds)
break;
// decode
mavlink_waypoint_request_t packet;
mavlink_msg_waypoint_request_decode(msg, &packet);
if (_checkTarget(packet.target_system, packet.target_component))
break;
_hal->debug->printf_P(PSTR("sequence: %d\n"),packet.seq);
AP_MavlinkCommand cmd(packet.seq);
mavlink_waypoint_t wp = cmd.convert(_guide->getCurrentIndex());
mavlink_msg_waypoint_send(_channel, _cmdDestSysId, _cmdDestCompId,
wp.seq, wp.frame, wp.command, wp.current, wp.autocontinue,
wp.param1, wp.param2, wp.param3, wp.param4, wp.x, wp.y,
wp.z);
// update last waypoint comm stamp
_cmdTimeLastSent = millis();
break;
}
case MAVLINK_MSG_ID_WAYPOINT_ACK: {
sendText(SEVERITY_LOW, PSTR("waypoint ack"));
// decode
mavlink_waypoint_ack_t packet;
mavlink_msg_waypoint_ack_decode(msg, &packet);
if (_checkTarget(packet.target_system, packet.target_component))
break;
// check for error
//uint8_t type = packet.type; // ok (0), error(1)
// turn off waypoint send
_sendingCmds = false;
break;
}
case MAVLINK_MSG_ID_PARAM_REQUEST_LIST: {
sendText(SEVERITY_LOW, PSTR("param request list"));
// decode
mavlink_param_request_list_t packet;
mavlink_msg_param_request_list_decode(msg, &packet);
if (_checkTarget(packet.target_system, packet.target_component))
break;
// Start sending parameters - next call to ::update will kick the first one out
_queuedParameter = AP_Var::first();
_queuedParameterIndex = 0;
break;
}
case MAVLINK_MSG_ID_WAYPOINT_CLEAR_ALL: {
sendText(SEVERITY_LOW, PSTR("waypoint clear all"));
// decode
mavlink_waypoint_clear_all_t packet;
mavlink_msg_waypoint_clear_all_decode(msg, &packet);
if (_checkTarget(packet.target_system, packet.target_component))
break;
// clear all waypoints
uint8_t type = 0; // ok (0), error(1)
_guide->setNumberOfCommands(1);
_guide->setCurrentIndex(0);
// send acknowledgement 3 times to makes sure it is received
for (int i = 0; i < 3; i++)
mavlink_msg_waypoint_ack_send(_channel, msg->sysid,
msg->compid, type);
break;
}
case MAVLINK_MSG_ID_WAYPOINT_SET_CURRENT: {
sendText(SEVERITY_LOW, PSTR("waypoint set current"));
// decode
mavlink_waypoint_set_current_t packet;
mavlink_msg_waypoint_set_current_decode(msg, &packet);
Serial.print("Packet Sequence:");
Serial.println(packet.seq);
if (_checkTarget(packet.target_system, packet.target_component))
break;
// set current waypoint
Serial.print("Current Index:");
Serial.println(_guide->getCurrentIndex());
Serial.flush();
_guide->setCurrentIndex(packet.seq);
mavlink_msg_waypoint_current_send(_channel,
_guide->getCurrentIndex());
break;
}
case MAVLINK_MSG_ID_WAYPOINT_COUNT: {
sendText(SEVERITY_LOW, PSTR("waypoint count"));
// decode
mavlink_waypoint_count_t packet;
mavlink_msg_waypoint_count_decode(msg, &packet);
if (_checkTarget(packet.target_system, packet.target_component))
break;
// start waypoint receiving
if (packet.count > _cmdMax) {
packet.count = _cmdMax;
}
_cmdNumberRequested = packet.count;
_cmdTimeLastReceived = millis();
_receivingCmds = true;
_sendingCmds = false;
_cmdRequestIndex = 0;
break;
}
case MAVLINK_MSG_ID_WAYPOINT: {
sendText(SEVERITY_LOW, PSTR("waypoint"));
// Check if receiving waypiont
if (!_receivingCmds) {
//sendText(SEVERITY_HIGH, PSTR("not receiving commands"));
break;
}
// decode
mavlink_waypoint_t packet;
mavlink_msg_waypoint_decode(msg, &packet);
if (_checkTarget(packet.target_system, packet.target_component))
break;
// check if this is the requested waypoint
if (packet.seq != _cmdRequestIndex) {
char warningMsg[50];
sprintf(warningMsg,
"waypoint request out of sequence: (packet) %d / %d (ap)",
packet.seq, _cmdRequestIndex);
sendText(SEVERITY_HIGH, warningMsg);
break;
}
_hal->debug->printf_P(PSTR("received waypoint x: %f\ty: %f\tz: %f\n"),
packet.x,
packet.y,
packet.z);
// store waypoint
AP_MavlinkCommand command(packet);
//sendText(SEVERITY_HIGH, PSTR("waypoint stored"));
_cmdRequestIndex++;
if (_cmdRequestIndex == _cmdNumberRequested) {
sendMessage(MAVLINK_MSG_ID_WAYPOINT_ACK);
_receivingCmds = false;
_guide->setNumberOfCommands(_cmdNumberRequested);
//sendText(SEVERITY_LOW, PSTR("waypoint ack sent"));
} else if (_cmdRequestIndex > _cmdNumberRequested) {
_receivingCmds = false;
}
_cmdTimeLastReceived = millis();
break;
}
case MAVLINK_MSG_ID_PARAM_SET: {
sendText(SEVERITY_LOW, PSTR("param set"));
AP_Var *vp;
AP_Meta_class::Type_id var_type;
// decode
mavlink_param_set_t packet;
mavlink_msg_param_set_decode(msg, &packet);
if (_checkTarget(packet.target_system, packet.target_component))
break;
// set parameter
char key[_paramNameLengthMax + 1];
strncpy(key, (char *) packet.param_id, _paramNameLengthMax);
key[_paramNameLengthMax] = 0;
// find the requested parameter
vp = AP_Var::find(key);
if ((NULL != vp) && // exists
!isnan(packet.param_value) && // not nan
!isinf(packet.param_value)) { // not inf
// add a small amount before casting parameter values
// from float to integer to avoid truncating to the
// next lower integer value.
const float rounding_addition = 0.01;
// fetch the variable type ID
var_type = vp->meta_type_id();
// handle variables with standard type IDs
if (var_type == AP_Var::k_typeid_float) {
((AP_Float *) vp)->set_and_save(packet.param_value);
} else if (var_type == AP_Var::k_typeid_float16) {
((AP_Float16 *) vp)->set_and_save(packet.param_value);
} else if (var_type == AP_Var::k_typeid_int32) {
((AP_Int32 *) vp)->set_and_save(
packet.param_value + rounding_addition);
} else if (var_type == AP_Var::k_typeid_int16) {
((AP_Int16 *) vp)->set_and_save(
packet.param_value + rounding_addition);
} else if (var_type == AP_Var::k_typeid_int8) {
((AP_Int8 *) vp)->set_and_save(
packet.param_value + rounding_addition);
} else {
// we don't support mavlink set on this parameter
break;
}
// Report back the new value if we accepted the change
// we send the value we actually set, which could be
// different from the value sent, in case someone sent
// a fractional value to an integer type
mavlink_msg_param_value_send(_channel, (int8_t *) key,
vp->cast_to_float(), _countParameters(), -1); // XXX we don't actually know what its index is...
}
break;
} // end case
}
}
uint16_t MavlinkComm::_countParameters() {
// if we haven't cached the parameter count yet...
if (0 == _parameterCount) {
AP_Var *vp;
vp = AP_Var::first();
do {
// if a parameter responds to cast_to_float then we are going to be able to report it
if (!isnan(vp->cast_to_float())) {
_parameterCount++;
}
} while (NULL != (vp = vp->next()));
}
return _parameterCount;
}
AP_Var * _findParameter(uint16_t index) {
AP_Var *vp;
vp = AP_Var::first();
while (NULL != vp) {
// if the parameter is reportable
if (!(isnan(vp->cast_to_float()))) {
// if we have counted down to the index we want
if (0 == index) {
// return the parameter
return vp;
}
// count off this parameter, as it is reportable but not
// the one we want
index--;
}
// and move to the next parameter
vp = vp->next();
}
return NULL;
}
// check the target
uint8_t MavlinkComm::_checkTarget(uint8_t sysid, uint8_t compid) {
/*
char msg[50];
sprintf(msg, "target = %d / %d\tcomp = %d / %d", sysid,
mavlink_system.sysid, compid, mavlink_system.compid);
sendText(SEVERITY_LOW, msg);
*/
if (sysid != mavlink_system.sysid) {
//sendText(SEVERITY_LOW, PSTR("system id mismatch"));
return 1;
} else if (compid != mavlink_system.compid) {
//sendText(SEVERITY_LOW, PSTR("component id mismatch"));
return 0; // XXX currently not receiving correct compid from gcs
} else {
return 0; // no error
}
}
} // apo

View File

@ -19,9 +19,12 @@
#ifndef AP_CommLink_H
#define AP_CommLink_H
#include "AP_HardwareAbstractionLayer.h"
#include <inttypes.h>
#include "../AP_Common/AP_Common.h"
#include "../AP_Common/AP_Vector.h"
#include "AP_MavlinkCommand.h"
#include "AP_Controller.h"
class FastSerial;
namespace apo {
@ -43,10 +46,7 @@ class AP_CommLink {
public:
AP_CommLink(FastSerial * link, AP_Navigator * navigator, AP_Guide * guide,
AP_Controller * controller, AP_HardwareAbstractionLayer * hal) :
_link(link), _navigator(navigator), _guide(guide),
_controller(controller), _hal(hal) {
}
AP_Controller * controller, AP_HardwareAbstractionLayer * hal);
virtual void send() = 0;
virtual void receive() = 0;
virtual void sendMessage(uint8_t id, uint32_t param = 0) = 0;
@ -67,264 +67,24 @@ protected:
class MavlinkComm: public AP_CommLink {
public:
MavlinkComm(FastSerial * link, AP_Navigator * nav, AP_Guide * guide,
AP_Controller * controller, AP_HardwareAbstractionLayer * hal) :
AP_CommLink(link, nav, guide, controller, hal),
AP_Controller * controller, AP_HardwareAbstractionLayer * hal);
// options
_useRelativeAlt(true),
// commands
_sendingCmds(false), _receivingCmds(false),
_cmdTimeLastSent(millis()), _cmdTimeLastReceived(millis()),
_cmdDestSysId(0), _cmdDestCompId(0), _cmdRequestIndex(0),
_cmdMax(30), _cmdNumberRequested(0),
// parameters
_parameterCount(0), _queuedParameter(NULL),
_queuedParameterIndex(0) {
switch (_nChannels) {
case 0:
mavlink_comm_0_port = link;
_channel = MAVLINK_COMM_0;
_nChannels++;
break;
case 1:
mavlink_comm_1_port = link;
_channel = MAVLINK_COMM_1;
_nChannels++;
break;
default:
// signal that number of channels exceeded
_channel = MAVLINK_COMM_3;
break;
}
}
virtual void send() {
// if number of channels exceeded return
if (_channel == MAVLINK_COMM_3)
return;
}
void sendMessage(uint8_t id, uint32_t param = 0) {
//_hal->debug->printf_P(PSTR("send message\n"));
// if number of channels exceeded return
if (_channel == MAVLINK_COMM_3)
return;
uint64_t timeStamp = micros();
switch (id) {
case MAVLINK_MSG_ID_HEARTBEAT: {
mavlink_msg_heartbeat_send(_channel, mavlink_system.type,
MAV_AUTOPILOT_ARDUPILOTMEGA);
break;
}
case MAVLINK_MSG_ID_ATTITUDE: {
mavlink_msg_attitude_send(_channel, timeStamp,
_navigator->getRoll(), _navigator->getPitch(),
_navigator->getYaw(), _navigator->getRollRate(),
_navigator->getPitchRate(), _navigator->getYawRate());
break;
}
case MAVLINK_MSG_ID_GLOBAL_POSITION: {
mavlink_msg_global_position_send(_channel, timeStamp,
_navigator->getLat() * rad2Deg,
_navigator->getLon() * rad2Deg, _navigator->getAlt(),
_navigator->getVN(), _navigator->getVE(),
_navigator->getVD());
break;
}
case MAVLINK_MSG_ID_GPS_RAW: {
mavlink_msg_gps_raw_send(_channel, timeStamp, _hal->gps->status(),
_navigator->getLat() * rad2Deg,
_navigator->getLon() * rad2Deg, _navigator->getAlt(), 0, 0,
_navigator->getGroundSpeed(),
_navigator->getYaw() * rad2Deg);
break;
}
/*
case MAVLINK_MSG_ID_GPS_RAW_INT: {
mavlink_msg_gps_raw_int_send(_channel,timeStamp,_hal->gps->status(),
_navigator->getLat_degInt(), _navigator->getLon_degInt(),_navigator->getAlt_intM(), 0,0,
_navigator->getGroundSpeed(),_navigator->getYaw()*rad2Deg);
break;
}
*/
case MAVLINK_MSG_ID_SCALED_IMU: {
/*
* accel/gyro debug
*/
/*
Vector3f accel = _hal->imu->get_accel();
Vector3f gyro = _hal->imu->get_gyro();
Serial.printf_P(PSTR("accel: %f %f %f gyro: %f %f %f\n"),
accel.x,accel.y,accel.z,gyro.x,gyro.y,gyro.z);
*/
Vector3f accel = _hal->imu->get_accel();
Vector3f gyro = _hal->imu->get_gyro();
mavlink_msg_raw_imu_send(_channel, timeStamp, 1000 * accel.x,
1000 * accel.y, 1000 * accel.z, 1000 * gyro.x,
1000 * gyro.y, 1000 * gyro.z, _hal->compass->mag_x,
_hal->compass->mag_y, _hal->compass->mag_z); // XXX THIS IS NOT SCALED FOR MAG
}
case MAVLINK_MSG_ID_RC_CHANNELS_SCALED: {
int16_t ch[8];
for (int i = 0; i < 8; i++)
ch[i] = 0;
for (uint8_t i = 0; i < 8 && i < _hal->rc.getSize(); i++) {
ch[i] = 10000 * _hal->rc[i]->getPosition();
//_hal->debug->printf_P(PSTR("ch: %d position: %d\n"),i,ch[i]);
}
mavlink_msg_rc_channels_scaled_send(_channel, ch[0], ch[1], ch[2],
ch[3], ch[4], ch[5], ch[6], ch[7], 255);
break;
}
case MAVLINK_MSG_ID_RC_CHANNELS_RAW: {
int16_t ch[8];
for (int i = 0; i < 8; i++)
ch[i] = 0;
for (uint8_t i = 0; i < 8 && i < _hal->rc.getSize(); i++)
ch[i] = _hal->rc[i]->getPwm();
mavlink_msg_rc_channels_raw_send(_channel, ch[0], ch[1], ch[2],
ch[3], ch[4], ch[5], ch[6], ch[7], 255);
break;
}
case MAVLINK_MSG_ID_SYS_STATUS: {
float batteryVoltage, temp;
temp = analogRead(0);
batteryVoltage = ((temp * 5 / 1023) / 0.28);
mavlink_msg_sys_status_send(_channel, _controller->getMode(),
_guide->getMode(), _hal->getState(), _hal->load * 10,
batteryVoltage * 1000,
(batteryVoltage - 3.3) / (4.2 - 3.3) * 1000, _packetDrops);
break;
}
case MAVLINK_MSG_ID_WAYPOINT_ACK: {
sendText(SEVERITY_LOW, PSTR("waypoint ack"));
//mavlink_waypoint_ack_t packet;
uint8_t type = 0; // ok (0), error(1)
mavlink_msg_waypoint_ack_send(_channel, _cmdDestSysId,
_cmdDestCompId, type);
// turn off waypoint send
_receivingCmds = false;
break;
}
case MAVLINK_MSG_ID_WAYPOINT_CURRENT: {
mavlink_msg_waypoint_current_send(_channel,
_guide->getCurrentIndex());
break;
}
default: {
char msg[50];
sprintf(msg, "autopilot sending unknown command with id: %d", id);
sendText(SEVERITY_HIGH, msg);
}
} // switch
} // send message
virtual void receive() {
//_hal->debug->printf_P(PSTR("receive\n"));
// if number of channels exceeded return
//
if (_channel == MAVLINK_COMM_3)
return;
// receive new packets
mavlink_message_t msg;
mavlink_status_t status;
// process received bytes
while (comm_get_available(_channel)) {
uint8_t c = comm_receive_ch(_channel);
// Try to get a new message
if (mavlink_parse_char(_channel, c, &msg, &status))
_handleMessage(&msg);
}
// Update packet drops counter
_packetDrops += status.packet_rx_drop_count;
}
void sendText(uint8_t severity, const char *str) {
mavlink_msg_statustext_send(_channel, severity, (const int8_t*) str);
}
void sendText(uint8_t severity, const prog_char_t *str) {
mavlink_statustext_t m;
uint8_t i;
for (i = 0; i < sizeof(m.text); i++) {
m.text[i] = pgm_read_byte((const prog_char *) (str++));
}
if (i < sizeof(m.text))
m.text[i] = 0;
sendText(severity, (const char *) m.text);
}
void acknowledge(uint8_t id, uint8_t sum1, uint8_t sum2) {
}
virtual void send();
void sendMessage(uint8_t id, uint32_t param = 0);
virtual void receive();
void sendText(uint8_t severity, const char *str);
void sendText(uint8_t severity, const prog_char_t *str);
void acknowledge(uint8_t id, uint8_t sum1, uint8_t sum2);
/**
* sends parameters one at a time
*/
void sendParameters() {
//_hal->debug->printf_P(PSTR("send parameters\n"));
// Check to see if we are sending parameters
while (NULL != _queuedParameter) {
AP_Var *vp;
float value;
// copy the current parameter and prepare to move to the next
vp = _queuedParameter;
_queuedParameter = _queuedParameter->next();
// if the parameter can be cast to float, report it here and break out of the loop
value = vp->cast_to_float();
if (!isnan(value)) {
char paramName[_paramNameLengthMax];
vp->copy_name(paramName, sizeof(paramName));
mavlink_msg_param_value_send(_channel, (int8_t*) paramName,
value, _countParameters(), _queuedParameterIndex);
_queuedParameterIndex++;
break;
}
}
}
void sendParameters();
/**
* request commands one at a time
*/
void requestCmds() {
//_hal->debug->printf_P(PSTR("requesting commands\n"));
// request cmds one by one
if (_receivingCmds && _cmdRequestIndex <= _cmdNumberRequested) {
mavlink_msg_waypoint_request_send(_channel, _cmdDestSysId,
_cmdDestCompId, _cmdRequestIndex);
}
}
void requestCmds();
private:
@ -354,432 +114,14 @@ private:
uint16_t _packetDrops;
static uint8_t _nChannels;
void _handleMessage(mavlink_message_t * msg) {
void _handleMessage(mavlink_message_t * msg);
uint32_t timeStamp = micros();
uint16_t _countParameters();
switch (msg->msgid) {
_hal->debug->printf_P(PSTR("message received: %d"), msg->msgid);
case MAVLINK_MSG_ID_HEARTBEAT: {
mavlink_heartbeat_t packet;
mavlink_msg_heartbeat_decode(msg, &packet);
_hal->lastHeartBeat = micros();
break;
}
case MAVLINK_MSG_ID_GPS_RAW: {
// decode
mavlink_gps_raw_t packet;
mavlink_msg_gps_raw_decode(msg, &packet);
_navigator->setTimeStamp(timeStamp);
_navigator->setLat(packet.lat * deg2Rad);
_navigator->setLon(packet.lon * deg2Rad);
_navigator->setAlt(packet.alt);
_navigator->setYaw(packet.hdg * deg2Rad);
_navigator->setGroundSpeed(packet.v);
_navigator->setAirSpeed(packet.v);
//_hal->debug->printf_P(PSTR("received hil gps raw packet\n"));
/*
_hal->debug->printf_P(PSTR("received lat: %f deg\tlon: %f deg\talt: %f m\n"),
packet.lat,
packet.lon,
packet.alt);
*/
break;
}
case MAVLINK_MSG_ID_ATTITUDE: {
// decode
mavlink_attitude_t packet;
mavlink_msg_attitude_decode(msg, &packet);
// set dcm hil sensor
_navigator->setTimeStamp(timeStamp);
_navigator->setRoll(packet.roll);
_navigator->setPitch(packet.pitch);
_navigator->setYaw(packet.yaw);
_navigator->setRollRate(packet.rollspeed);
_navigator->setPitchRate(packet.pitchspeed);
_navigator->setYawRate(packet.yawspeed);
//_hal->debug->printf_P(PSTR("received hil attitude packet\n"));
break;
}
case MAVLINK_MSG_ID_ACTION: {
// decode
mavlink_action_t packet;
mavlink_msg_action_decode(msg, &packet);
if (_checkTarget(packet.target, packet.target_component))
break;
// do action
sendText(SEVERITY_LOW, PSTR("action received"));
switch (packet.action) {
case MAV_ACTION_STORAGE_READ:
AP_Var::load_all();
break;
case MAV_ACTION_STORAGE_WRITE:
AP_Var::save_all();
break;
case MAV_ACTION_CALIBRATE_RC:
case MAV_ACTION_CALIBRATE_GYRO:
case MAV_ACTION_CALIBRATE_MAG:
case MAV_ACTION_CALIBRATE_ACC:
case MAV_ACTION_CALIBRATE_PRESSURE:
case MAV_ACTION_REBOOT:
case MAV_ACTION_REC_START:
case MAV_ACTION_REC_PAUSE:
case MAV_ACTION_REC_STOP:
case MAV_ACTION_TAKEOFF:
case MAV_ACTION_LAND:
case MAV_ACTION_NAVIGATE:
case MAV_ACTION_LOITER:
case MAV_ACTION_MOTORS_START:
case MAV_ACTION_CONFIRM_KILL:
case MAV_ACTION_EMCY_KILL:
case MAV_ACTION_MOTORS_STOP:
case MAV_ACTION_SHUTDOWN:
case MAV_ACTION_CONTINUE:
case MAV_ACTION_SET_MANUAL:
case MAV_ACTION_SET_AUTO:
case MAV_ACTION_LAUNCH:
case MAV_ACTION_RETURN:
case MAV_ACTION_EMCY_LAND:
case MAV_ACTION_HALT:
sendText(SEVERITY_LOW, PSTR("action not implemented"));
break;
default:
sendText(SEVERITY_LOW, PSTR("unknown action"));
break;
}
break;
}
case MAVLINK_MSG_ID_WAYPOINT_REQUEST_LIST: {
sendText(SEVERITY_LOW, PSTR("waypoint request list"));
// decode
mavlink_waypoint_request_list_t packet;
mavlink_msg_waypoint_request_list_decode(msg, &packet);
if (_checkTarget(packet.target_system, packet.target_component))
break;
// Start sending waypoints
mavlink_msg_waypoint_count_send(_channel, msg->sysid, msg->compid,
_guide->getNumberOfCommands());
_cmdTimeLastSent = millis();
_cmdTimeLastReceived = millis();
_sendingCmds = true;
_receivingCmds = false;
_cmdDestSysId = msg->sysid;
_cmdDestCompId = msg->compid;
break;
}
case MAVLINK_MSG_ID_WAYPOINT_REQUEST: {
sendText(SEVERITY_LOW, PSTR("waypoint request"));
// Check if sending waypiont
if (!_sendingCmds)
break;
// decode
mavlink_waypoint_request_t packet;
mavlink_msg_waypoint_request_decode(msg, &packet);
if (_checkTarget(packet.target_system, packet.target_component))
break;
_hal->debug->printf_P(PSTR("sequence: %d\n"),packet.seq);
AP_MavlinkCommand cmd(packet.seq);
mavlink_waypoint_t wp = cmd.convert(_guide->getCurrentIndex());
mavlink_msg_waypoint_send(_channel, _cmdDestSysId, _cmdDestCompId,
wp.seq, wp.frame, wp.command, wp.current, wp.autocontinue,
wp.param1, wp.param2, wp.param3, wp.param4, wp.x, wp.y,
wp.z);
// update last waypoint comm stamp
_cmdTimeLastSent = millis();
break;
}
case MAVLINK_MSG_ID_WAYPOINT_ACK: {
sendText(SEVERITY_LOW, PSTR("waypoint ack"));
// decode
mavlink_waypoint_ack_t packet;
mavlink_msg_waypoint_ack_decode(msg, &packet);
if (_checkTarget(packet.target_system, packet.target_component))
break;
// check for error
//uint8_t type = packet.type; // ok (0), error(1)
// turn off waypoint send
_sendingCmds = false;
break;
}
case MAVLINK_MSG_ID_PARAM_REQUEST_LIST: {
sendText(SEVERITY_LOW, PSTR("param request list"));
// decode
mavlink_param_request_list_t packet;
mavlink_msg_param_request_list_decode(msg, &packet);
if (_checkTarget(packet.target_system, packet.target_component))
break;
// Start sending parameters - next call to ::update will kick the first one out
_queuedParameter = AP_Var::first();
_queuedParameterIndex = 0;
break;
}
case MAVLINK_MSG_ID_WAYPOINT_CLEAR_ALL: {
sendText(SEVERITY_LOW, PSTR("waypoint clear all"));
// decode
mavlink_waypoint_clear_all_t packet;
mavlink_msg_waypoint_clear_all_decode(msg, &packet);
if (_checkTarget(packet.target_system, packet.target_component))
break;
// clear all waypoints
uint8_t type = 0; // ok (0), error(1)
_guide->setNumberOfCommands(1);
_guide->setCurrentIndex(0);
// send acknowledgement 3 times to makes sure it is received
for (int i = 0; i < 3; i++)
mavlink_msg_waypoint_ack_send(_channel, msg->sysid,
msg->compid, type);
break;
}
case MAVLINK_MSG_ID_WAYPOINT_SET_CURRENT: {
sendText(SEVERITY_LOW, PSTR("waypoint set current"));
// decode
mavlink_waypoint_set_current_t packet;
mavlink_msg_waypoint_set_current_decode(msg, &packet);
Serial.print("Packet Sequence:");
Serial.println(packet.seq);
if (_checkTarget(packet.target_system, packet.target_component))
break;
// set current waypoint
Serial.print("Current Index:");
Serial.println(_guide->getCurrentIndex());
Serial.flush();
_guide->setCurrentIndex(packet.seq);
mavlink_msg_waypoint_current_send(_channel,
_guide->getCurrentIndex());
break;
}
case MAVLINK_MSG_ID_WAYPOINT_COUNT: {
sendText(SEVERITY_LOW, PSTR("waypoint count"));
// decode
mavlink_waypoint_count_t packet;
mavlink_msg_waypoint_count_decode(msg, &packet);
if (_checkTarget(packet.target_system, packet.target_component))
break;
// start waypoint receiving
if (packet.count > _cmdMax) {
packet.count = _cmdMax;
}
_cmdNumberRequested = packet.count;
_cmdTimeLastReceived = millis();
_receivingCmds = true;
_sendingCmds = false;
_cmdRequestIndex = 0;
break;
}
case MAVLINK_MSG_ID_WAYPOINT: {
sendText(SEVERITY_LOW, PSTR("waypoint"));
// Check if receiving waypiont
if (!_receivingCmds) {
//sendText(SEVERITY_HIGH, PSTR("not receiving commands"));
break;
}
// decode
mavlink_waypoint_t packet;
mavlink_msg_waypoint_decode(msg, &packet);
if (_checkTarget(packet.target_system, packet.target_component))
break;
// check if this is the requested waypoint
if (packet.seq != _cmdRequestIndex) {
char warningMsg[50];
sprintf(warningMsg,
"waypoint request out of sequence: (packet) %d / %d (ap)",
packet.seq, _cmdRequestIndex);
sendText(SEVERITY_HIGH, warningMsg);
break;
}
_hal->debug->printf_P(PSTR("received waypoint x: %f\ty: %f\tz: %f\n"),
packet.x,
packet.y,
packet.z);
// store waypoint
AP_MavlinkCommand command(packet);
//sendText(SEVERITY_HIGH, PSTR("waypoint stored"));
_cmdRequestIndex++;
if (_cmdRequestIndex == _cmdNumberRequested) {
sendMessage(MAVLINK_MSG_ID_WAYPOINT_ACK);
_receivingCmds = false;
_guide->setNumberOfCommands(_cmdNumberRequested);
//sendText(SEVERITY_LOW, PSTR("waypoint ack sent"));
} else if (_cmdRequestIndex > _cmdNumberRequested) {
_receivingCmds = false;
}
_cmdTimeLastReceived = millis();
break;
}
case MAVLINK_MSG_ID_PARAM_SET: {
sendText(SEVERITY_LOW, PSTR("param set"));
AP_Var *vp;
AP_Meta_class::Type_id var_type;
// decode
mavlink_param_set_t packet;
mavlink_msg_param_set_decode(msg, &packet);
if (_checkTarget(packet.target_system, packet.target_component))
break;
// set parameter
char key[_paramNameLengthMax + 1];
strncpy(key, (char *) packet.param_id, _paramNameLengthMax);
key[_paramNameLengthMax] = 0;
// find the requested parameter
vp = AP_Var::find(key);
if ((NULL != vp) && // exists
!isnan(packet.param_value) && // not nan
!isinf(packet.param_value)) { // not inf
// add a small amount before casting parameter values
// from float to integer to avoid truncating to the
// next lower integer value.
const float rounding_addition = 0.01;
// fetch the variable type ID
var_type = vp->meta_type_id();
// handle variables with standard type IDs
if (var_type == AP_Var::k_typeid_float) {
((AP_Float *) vp)->set_and_save(packet.param_value);
} else if (var_type == AP_Var::k_typeid_float16) {
((AP_Float16 *) vp)->set_and_save(packet.param_value);
} else if (var_type == AP_Var::k_typeid_int32) {
((AP_Int32 *) vp)->set_and_save(
packet.param_value + rounding_addition);
} else if (var_type == AP_Var::k_typeid_int16) {
((AP_Int16 *) vp)->set_and_save(
packet.param_value + rounding_addition);
} else if (var_type == AP_Var::k_typeid_int8) {
((AP_Int8 *) vp)->set_and_save(
packet.param_value + rounding_addition);
} else {
// we don't support mavlink set on this parameter
break;
}
// Report back the new value if we accepted the change
// we send the value we actually set, which could be
// different from the value sent, in case someone sent
// a fractional value to an integer type
mavlink_msg_param_value_send(_channel, (int8_t *) key,
vp->cast_to_float(), _countParameters(), -1); // XXX we don't actually know what its index is...
}
break;
} // end case
}
}
uint16_t _countParameters() {
// if we haven't cached the parameter count yet...
if (0 == _parameterCount) {
AP_Var *vp;
vp = AP_Var::first();
do {
// if a parameter responds to cast_to_float then we are going to be able to report it
if (!isnan(vp->cast_to_float())) {
_parameterCount++;
}
} while (NULL != (vp = vp->next()));
}
return _parameterCount;
}
AP_Var * _findParameter(uint16_t index) {
AP_Var *vp;
vp = AP_Var::first();
while (NULL != vp) {
// if the parameter is reportable
if (!(isnan(vp->cast_to_float()))) {
// if we have counted down to the index we want
if (0 == index) {
// return the parameter
return vp;
}
// count off this parameter, as it is reportable but not
// the one we want
index--;
}
// and move to the next parameter
vp = vp->next();
}
return NULL;
}
AP_Var * _findParameter(uint16_t index);
// check the target
uint8_t _checkTarget(uint8_t sysid, uint8_t compid) {
/*
char msg[50];
sprintf(msg, "target = %d / %d\tcomp = %d / %d", sysid,
mavlink_system.sysid, compid, mavlink_system.compid);
sendText(SEVERITY_LOW, msg);
*/
if (sysid != mavlink_system.sysid) {
//sendText(SEVERITY_LOW, PSTR("system id mismatch"));
return 1;
} else if (compid != mavlink_system.compid) {
//sendText(SEVERITY_LOW, PSTR("component id mismatch"));
return 0; // XXX currently not receiving correct compid from gcs
} else {
return 0; // no error
}
}
uint8_t _checkTarget(uint8_t sysid, uint8_t compid);
};

View File

@ -6,3 +6,28 @@
*/
#include "AP_Controller.h"
#include "AP_HardwareAbstractionLayer.h"
#include "../AP_Common/include/menu.h"
#include "AP_RcChannel.h"
namespace apo {
AP_Controller::AP_Controller(AP_Navigator * nav, AP_Guide * guide,
AP_HardwareAbstractionLayer * hal) :
_nav(nav), _guide(guide), _hal(hal) {
setAllRadioChannelsToNeutral();
}
void AP_Controller::setAllRadioChannelsToNeutral() {
for (uint8_t i = 0; i < _hal->rc.getSize(); i++) {
_hal->rc[i]->setPosition(0.0);
}
}
void AP_Controller::setAllRadioChannelsManually() {
for (uint8_t i = 0; i < _hal->rc.getSize(); i++) {
_hal->rc[i]->setUsingRadio();
}
}
}

View File

@ -19,37 +19,28 @@
#ifndef AP_Controller_H
#define AP_Controller_H
#include "AP_Navigator.h"
#include "AP_Guide.h"
#include "AP_HardwareAbstractionLayer.h"
#include "../AP_Common/AP_Vector.h"
#include "../AP_Common/AP_Var.h"
#include <inttypes.h>
#include "../GCS_MAVLink/GCS_MAVLink.h"
#include <math.h>
class AP_Var_group;
namespace apo {
class AP_HardwareAbstractionLayer;
class AP_Guide;
class AP_Navigator;
class Menu;
/// Controller class
class AP_Controller {
public:
AP_Controller(AP_Navigator * nav, AP_Guide * guide,
AP_HardwareAbstractionLayer * hal) :
_nav(nav), _guide(guide), _hal(hal) {
}
AP_HardwareAbstractionLayer * hal);
virtual void update(const float & dt) = 0;
virtual MAV_MODE getMode() = 0;
void setAllRadioChannelsToNeutral() {
for (uint8_t i = 0; i < _hal->rc.getSize(); i++) {
_hal->rc[i]->setPosition(0.0);
}
}
void setAllRadioChannelsManually() {
for (uint8_t i = 0; i < _hal->rc.getSize(); i++) {
_hal->rc[i]->setUsingRadio();
}
}
void setAllRadioChannelsToNeutral();
void setAllRadioChannelsManually();
protected:
AP_Navigator * _nav;
@ -278,23 +269,30 @@ protected:
class BlockPIDDfb: public AP_ControllerBlock {
public:
BlockPIDDfb(AP_Var_group * group, uint8_t groupStart, float kP, float kI,
float kD, float iMax, float yMax, const prog_char_t * dLabel = NULL) :
float kD, float iMax, float yMax, float dFCut,
const prog_char_t * dFCutLabel = NULL,
const prog_char_t * dLabel = NULL) :
AP_ControllerBlock(group, groupStart, 5),
_blockP(group, groupStart, kP),
_blockI(group, _blockP.getGroupEnd(), kI, iMax),
_blockSaturation(group, _blockI.getGroupEnd(), yMax),
_kD(group, _blockSaturation.getGroupEnd(), kD, dLabel ? : PSTR("d")) {
_blockLowPass(group, _blockSaturation.getGroupEnd(), dFCut,
dFCutLabel ? : PSTR("dFCut")),
_kD(group, _blockLowPass.getGroupEnd(), kD, dLabel ? : PSTR("d"))
{
}
float update(const float & input, const float & derivative,
const float & dt) {
float y = _blockP.update(input) + _blockI.update(input, dt) - _kD
* derivative;
* _blockLowPass.update(derivative,dt);
return _blockSaturation.update(y);
}
protected:
BlockP _blockP;
BlockI _blockI;
BlockSaturation _blockSaturation;
BlockLowPass _blockLowPass;
AP_Float _kD; /// derivative gain
};

View File

@ -6,3 +6,232 @@
*/
#include "AP_Guide.h"
#include "../FastSerial/FastSerial.h"
#include "AP_Navigator.h"
#include "constants.h"
#include "AP_HardwareAbstractionLayer.h"
#include "AP_CommLink.h"
namespace apo {
AP_Guide::AP_Guide(AP_Navigator * navigator, AP_HardwareAbstractionLayer * hal) :
_navigator(navigator), _hal(hal), _command(AP_MavlinkCommand::home),
_previousCommand(AP_MavlinkCommand::home),
_headingCommand(0), _airSpeedCommand(0),
_groundSpeedCommand(0), _altitudeCommand(0), _pNCmd(0),
_pECmd(0), _pDCmd(0), _mode(MAV_NAV_LOST),
_numberOfCommands(1), _cmdIndex(0), _nextCommandCalls(0),
_nextCommandTimer(0) {
}
void AP_Guide::setCurrentIndex(uint8_t val){
_cmdIndex.set_and_save(val);
_command = AP_MavlinkCommand(getCurrentIndex());
_previousCommand = AP_MavlinkCommand(getPreviousIndex());
_hal->gcs->sendMessage(MAVLINK_MSG_ID_WAYPOINT_CURRENT);
}
MavlinkGuide::MavlinkGuide(AP_Navigator * navigator,
AP_HardwareAbstractionLayer * hal) :
AP_Guide(navigator, hal), _rangeFinderFront(), _rangeFinderBack(),
_rangeFinderLeft(), _rangeFinderRight(),
_group(k_guide, PSTR("guide_")),
_velocityCommand(&_group, 1, 1, PSTR("velCmd")),
_crossTrackGain(&_group, 2, 1, PSTR("xt")),
_crossTrackLim(&_group, 3, 90, PSTR("xtLim")) {
for (uint8_t i = 0; i < _hal->rangeFinders.getSize(); i++) {
RangeFinder * rF = _hal->rangeFinders[i];
if (rF == NULL)
continue;
if (rF->orientation_x == 1 && rF->orientation_y == 0
&& rF->orientation_z == 0)
_rangeFinderFront = rF;
else if (rF->orientation_x == -1 && rF->orientation_y == 0
&& rF->orientation_z == 0)
_rangeFinderBack = rF;
else if (rF->orientation_x == 0 && rF->orientation_y == 1
&& rF->orientation_z == 0)
_rangeFinderRight = rF;
else if (rF->orientation_x == 0 && rF->orientation_y == -1
&& rF->orientation_z == 0)
_rangeFinderLeft = rF;
}
}
void MavlinkGuide::update() {
// process mavlink commands
handleCommand();
// obstacle avoidance overrides
// stop if your going to drive into something in front of you
for (uint8_t i = 0; i < _hal->rangeFinders.getSize(); i++)
_hal->rangeFinders[i]->read();
float frontDistance = _rangeFinderFront->distance / 200.0; //convert for other adc
if (_rangeFinderFront && frontDistance < 2) {
_mode = MAV_NAV_VECTOR;
//airSpeedCommand = 0;
//groundSpeedCommand = 0;
// _headingCommand -= 45 * deg2Rad;
// _hal->debug->print("Obstacle Distance (m): ");
// _hal->debug->println(frontDistance);
// _hal->debug->print("Obstacle avoidance Heading Command: ");
// _hal->debug->println(headingCommand);
// _hal->debug->printf_P(
// PSTR("Front Distance, %f\n"),
// frontDistance);
}
if (_rangeFinderBack && _rangeFinderBack->distance < 5) {
_airSpeedCommand = 0;
_groundSpeedCommand = 0;
}
if (_rangeFinderLeft && _rangeFinderLeft->distance < 5) {
_airSpeedCommand = 0;
_groundSpeedCommand = 0;
}
if (_rangeFinderRight && _rangeFinderRight->distance < 5) {
_airSpeedCommand = 0;
_groundSpeedCommand = 0;
}
}
void MavlinkGuide::nextCommand() {
// within 1 seconds, check if more than 5 calls to next command occur
// if they do, go to home waypoint
if (millis() - _nextCommandTimer < 1000) {
if (_nextCommandCalls > 5) {
Serial.println("commands loading too fast, returning home");
setCurrentIndex(0);
setNumberOfCommands(1);
_nextCommandCalls = 0;
_nextCommandTimer = millis();
return;
}
_nextCommandCalls++;
} else {
_nextCommandTimer = millis();
_nextCommandCalls = 0;
}
_cmdIndex = getNextIndex();
//Serial.print("cmd : "); Serial.println(int(_cmdIndex));
//Serial.print("cmd prev : "); Serial.println(int(getPreviousIndex()));
//Serial.print("cmd num : "); Serial.println(int(getNumberOfCommands()));
_command = AP_MavlinkCommand(getCurrentIndex());
_previousCommand = AP_MavlinkCommand(getPreviousIndex());
}
void MavlinkGuide::handleCommand() {
// TODO handle more commands
switch (_command.getCommand()) {
case MAV_CMD_NAV_WAYPOINT: {
// if we don't have enough waypoint for cross track calcs
// go home
if (_numberOfCommands == 1) {
_mode = MAV_NAV_RETURNING;
_altitudeCommand = AP_MavlinkCommand::home.getAlt();
_headingCommand = AP_MavlinkCommand::home.bearingTo(
_navigator->getLat_degInt(), _navigator->getLon_degInt())
+ 180 * deg2Rad;
if (_headingCommand > 360 * deg2Rad)
_headingCommand -= 360 * deg2Rad;
//_hal->debug->printf_P(PSTR("going home: bearing: %f distance: %f\n"),
//headingCommand,AP_MavlinkCommand::home.distanceTo(_navigator->getLat_degInt(),_navigator->getLon_degInt()));
// if we have 2 or more waypoints do x track navigation
} else {
_mode = MAV_NAV_WAYPOINT;
float alongTrack = _command.alongTrack(_previousCommand,
_navigator->getLat_degInt(),
_navigator->getLon_degInt());
float distanceToNext = _command.distanceTo(
_navigator->getLat_degInt(), _navigator->getLon_degInt());
float segmentLength = _previousCommand.distanceTo(_command);
if (distanceToNext < _command.getRadius() || alongTrack
> segmentLength)
{
Serial.println("waypoint reached");
nextCommand();
}
_altitudeCommand = _command.getAlt();
float dXt = _command.crossTrack(_previousCommand,
_navigator->getLat_degInt(),
_navigator->getLon_degInt());
float temp = dXt * _crossTrackGain * deg2Rad; // crosstrack gain, rad/m
if (temp > _crossTrackLim * deg2Rad)
temp = _crossTrackLim * deg2Rad;
if (temp < -_crossTrackLim * deg2Rad)
temp = -_crossTrackLim * deg2Rad;
float bearing = _previousCommand.bearingTo(_command);
_headingCommand = bearing - temp;
//_hal->debug->printf_P(
//PSTR("nav: bCurrent2Dest: %f\tdXt: %f\tcmdHeading: %f\tnextWpDistance: %f\talongTrack: %f\n"),
//bearing * rad2Deg, dXt, _headingCommand * rad2Deg, distanceToNext, alongTrack);
}
_groundSpeedCommand = _velocityCommand;
// calculate pN,pE,pD from home and gps coordinates
_pNCmd = _command.getPN(_navigator->getLat_degInt(),
_navigator->getLon_degInt());
_pECmd = _command.getPE(_navigator->getLat_degInt(),
_navigator->getLon_degInt());
_pDCmd = _command.getPD(_navigator->getAlt_intM());
// debug
//_hal->debug->printf_P(
//PSTR("guide loop, number: %d, current index: %d, previous index: %d\n"),
//getNumberOfCommands(),
//getCurrentIndex(),
//getPreviousIndex());
break;
}
// case MAV_CMD_CONDITION_CHANGE_ALT:
// case MAV_CMD_CONDITION_DELAY:
// case MAV_CMD_CONDITION_DISTANCE:
// case MAV_CMD_CONDITION_LAST:
// case MAV_CMD_CONDITION_YAW:
// case MAV_CMD_DO_CHANGE_SPEED:
// case MAV_CMD_DO_CONTROL_VIDEO:
// case MAV_CMD_DO_JUMP:
// case MAV_CMD_DO_LAST:
// case MAV_CMD_DO_LAST:
// case MAV_CMD_DO_REPEAT_RELAY:
// case MAV_CMD_DO_REPEAT_SERVO:
// case MAV_CMD_DO_SET_HOME:
// case MAV_CMD_DO_SET_MODE:
// case MAV_CMD_DO_SET_PARAMETER:
// case MAV_CMD_DO_SET_RELAY:
// case MAV_CMD_DO_SET_SERVO:
// case MAV_CMD_PREFLIGHT_CALIBRATION:
// case MAV_CMD_PREFLIGHT_STORAGE:
// case MAV_CMD_NAV_LAND:
// case MAV_CMD_NAV_LAST:
// case MAV_CMD_NAV_LOITER_TIME:
// case MAV_CMD_NAV_LOITER_TURNS:
// case MAV_CMD_NAV_LOITER_UNLIM:
// case MAV_CMD_NAV_ORIENTATION_TARGET:
// case MAV_CMD_NAV_PATHPLANNING:
// case MAV_CMD_NAV_RETURN_TO_LAUNCH:
// case MAV_CMD_NAV_TAKEOFF:
default:
// unhandled command, skip
Serial.println("unhandled command");
nextCommand();
break;
}
}
} // namespace apo
// vim:ts=4:sw=4:expandtab

View File

@ -19,18 +19,16 @@
#ifndef AP_Guide_H
#define AP_Guide_H
#include <inttypes.h>
#include "../GCS_MAVLink/GCS_MAVLink.h"
#include "AP_HardwareAbstractionLayer.h"
#include "AP_Navigator.h"
#include "../AP_Common/AP_Common.h"
#include "../AP_Common/AP_Vector.h"
#include "AP_MavlinkCommand.h"
#include "constants.h"
//#include "AP_CommLink.h"
#include "../AP_RangeFinder/AP_RangeFinder.h"
namespace apo {
class AP_Navigator;
class AP_HardwareAbstractionLayer;
/// Guide class
class AP_Guide {
public:
@ -39,15 +37,7 @@ public:
* This is the constructor, which requires a link to the navigator.
* @param navigator This is the navigator pointer.
*/
AP_Guide(AP_Navigator * navigator, AP_HardwareAbstractionLayer * hal) :
_navigator(navigator), _hal(hal), _command(AP_MavlinkCommand::home),
_previousCommand(AP_MavlinkCommand::home),
_headingCommand(0), _airSpeedCommand(0),
_groundSpeedCommand(0), _altitudeCommand(0), _pNCmd(0),
_pECmd(0), _pDCmd(0), _mode(MAV_NAV_LOST),
_numberOfCommands(1), _cmdIndex(0), _nextCommandCalls(0),
_nextCommandTimer(0) {
}
AP_Guide(AP_Navigator * navigator, AP_HardwareAbstractionLayer * hal);
virtual void update() = 0;
@ -60,12 +50,7 @@ public:
return _cmdIndex;
}
void setCurrentIndex(uint8_t val) {
_cmdIndex.set_and_save(val);
_command = AP_MavlinkCommand(getCurrentIndex());
_previousCommand = AP_MavlinkCommand(getPreviousIndex());
//_hal->gcs->sendMessage(MAVLINK_MSG_ID_WAYPOINT_CURRENT);
}
void setCurrentIndex(uint8_t val);
uint8_t getNumberOfCommands() {
return _numberOfCommands;
@ -140,205 +125,11 @@ protected:
class MavlinkGuide: public AP_Guide {
public:
MavlinkGuide(AP_Navigator * navigator,
AP_HardwareAbstractionLayer * hal) :
AP_Guide(navigator, hal), _rangeFinderFront(), _rangeFinderBack(),
_rangeFinderLeft(), _rangeFinderRight(),
_group(k_guide, PSTR("guide_")),
_velocityCommand(&_group, 1, 1, PSTR("velCmd")),
_crossTrackGain(&_group, 2, 1, PSTR("xt")),
_crossTrackLim(&_group, 3, 90, PSTR("xtLim")) {
AP_HardwareAbstractionLayer * hal);
virtual void update();
void nextCommand();
void handleCommand();
for (uint8_t i = 0; i < _hal->rangeFinders.getSize(); i++) {
RangeFinder * rF = _hal->rangeFinders[i];
if (rF == NULL)
continue;
if (rF->orientation_x == 1 && rF->orientation_y == 0
&& rF->orientation_z == 0)
_rangeFinderFront = rF;
else if (rF->orientation_x == -1 && rF->orientation_y == 0
&& rF->orientation_z == 0)
_rangeFinderBack = rF;
else if (rF->orientation_x == 0 && rF->orientation_y == 1
&& rF->orientation_z == 0)
_rangeFinderRight = rF;
else if (rF->orientation_x == 0 && rF->orientation_y == -1
&& rF->orientation_z == 0)
_rangeFinderLeft = rF;
}
}
virtual void update() {
// process mavlink commands
handleCommand();
// obstacle avoidance overrides
// stop if your going to drive into something in front of you
for (uint8_t i = 0; i < _hal->rangeFinders.getSize(); i++)
_hal->rangeFinders[i]->read();
float frontDistance = _rangeFinderFront->distance / 200.0; //convert for other adc
if (_rangeFinderFront && frontDistance < 2) {
_mode = MAV_NAV_VECTOR;
//airSpeedCommand = 0;
//groundSpeedCommand = 0;
// _headingCommand -= 45 * deg2Rad;
// _hal->debug->print("Obstacle Distance (m): ");
// _hal->debug->println(frontDistance);
// _hal->debug->print("Obstacle avoidance Heading Command: ");
// _hal->debug->println(headingCommand);
// _hal->debug->printf_P(
// PSTR("Front Distance, %f\n"),
// frontDistance);
}
if (_rangeFinderBack && _rangeFinderBack->distance < 5) {
_airSpeedCommand = 0;
_groundSpeedCommand = 0;
}
if (_rangeFinderLeft && _rangeFinderLeft->distance < 5) {
_airSpeedCommand = 0;
_groundSpeedCommand = 0;
}
if (_rangeFinderRight && _rangeFinderRight->distance < 5) {
_airSpeedCommand = 0;
_groundSpeedCommand = 0;
}
}
void nextCommand() {
// within 1 seconds, check if more than 5 calls to next command occur
// if they do, go to home waypoint
if (millis() - _nextCommandTimer < 1000) {
if (_nextCommandCalls > 5) {
Serial.println("commands loading too fast, returning home");
setCurrentIndex(0);
setNumberOfCommands(1);
_nextCommandCalls = 0;
_nextCommandTimer = millis();
return;
}
_nextCommandCalls++;
} else {
_nextCommandTimer = millis();
_nextCommandCalls = 0;
}
_cmdIndex = getNextIndex();
//Serial.print("cmd : "); Serial.println(int(_cmdIndex));
//Serial.print("cmd prev : "); Serial.println(int(getPreviousIndex()));
//Serial.print("cmd num : "); Serial.println(int(getNumberOfCommands()));
_command = AP_MavlinkCommand(getCurrentIndex());
_previousCommand = AP_MavlinkCommand(getPreviousIndex());
}
void handleCommand() {
// TODO handle more commands
switch (_command.getCommand()) {
case MAV_CMD_NAV_WAYPOINT: {
// if we don't have enough waypoint for cross track calcs
// go home
if (_numberOfCommands == 1) {
_mode = MAV_NAV_RETURNING;
_altitudeCommand = AP_MavlinkCommand::home.getAlt();
_headingCommand = AP_MavlinkCommand::home.bearingTo(
_navigator->getLat_degInt(), _navigator->getLon_degInt())
+ 180 * deg2Rad;
if (_headingCommand > 360 * deg2Rad)
_headingCommand -= 360 * deg2Rad;
//_hal->debug->printf_P(PSTR("going home: bearing: %f distance: %f\n"),
//headingCommand,AP_MavlinkCommand::home.distanceTo(_navigator->getLat_degInt(),_navigator->getLon_degInt()));
// if we have 2 or more waypoints do x track navigation
} else {
_mode = MAV_NAV_WAYPOINT;
float alongTrack = _command.alongTrack(_previousCommand,
_navigator->getLat_degInt(),
_navigator->getLon_degInt());
float distanceToNext = _command.distanceTo(
_navigator->getLat_degInt(), _navigator->getLon_degInt());
float segmentLength = _previousCommand.distanceTo(_command);
if (distanceToNext < _command.getRadius() || alongTrack
> segmentLength)
{
Serial.println("waypoint reached");
nextCommand();
}
_altitudeCommand = _command.getAlt();
float dXt = _command.crossTrack(_previousCommand,
_navigator->getLat_degInt(),
_navigator->getLon_degInt());
float temp = dXt * _crossTrackGain * deg2Rad; // crosstrack gain, rad/m
if (temp > _crossTrackLim * deg2Rad)
temp = _crossTrackLim * deg2Rad;
if (temp < -_crossTrackLim * deg2Rad)
temp = -_crossTrackLim * deg2Rad;
float bearing = _previousCommand.bearingTo(_command);
_headingCommand = bearing - temp;
//_hal->debug->printf_P(
//PSTR("nav: bCurrent2Dest: %f\tdXt: %f\tcmdHeading: %f\tnextWpDistance: %f\talongTrack: %f\n"),
//bearing * rad2Deg, dXt, _headingCommand * rad2Deg, distanceToNext, alongTrack);
}
_groundSpeedCommand = _velocityCommand;
// calculate pN,pE,pD from home and gps coordinates
_pNCmd = _command.getPN(_navigator->getLat_degInt(),
_navigator->getLon_degInt());
_pECmd = _command.getPE(_navigator->getLat_degInt(),
_navigator->getLon_degInt());
_pDCmd = _command.getPD(_navigator->getAlt_intM());
// debug
//_hal->debug->printf_P(
//PSTR("guide loop, number: %d, current index: %d, previous index: %d\n"),
//getNumberOfCommands(),
//getCurrentIndex(),
//getPreviousIndex());
break;
}
// case MAV_CMD_CONDITION_CHANGE_ALT:
// case MAV_CMD_CONDITION_DELAY:
// case MAV_CMD_CONDITION_DISTANCE:
// case MAV_CMD_CONDITION_LAST:
// case MAV_CMD_CONDITION_YAW:
// case MAV_CMD_DO_CHANGE_SPEED:
// case MAV_CMD_DO_CONTROL_VIDEO:
// case MAV_CMD_DO_JUMP:
// case MAV_CMD_DO_LAST:
// case MAV_CMD_DO_LAST:
// case MAV_CMD_DO_REPEAT_RELAY:
// case MAV_CMD_DO_REPEAT_SERVO:
// case MAV_CMD_DO_SET_HOME:
// case MAV_CMD_DO_SET_MODE:
// case MAV_CMD_DO_SET_PARAMETER:
// case MAV_CMD_DO_SET_RELAY:
// case MAV_CMD_DO_SET_SERVO:
// case MAV_CMD_PREFLIGHT_CALIBRATION:
// case MAV_CMD_PREFLIGHT_STORAGE:
// case MAV_CMD_NAV_LAND:
// case MAV_CMD_NAV_LAST:
// case MAV_CMD_NAV_LOITER_TIME:
// case MAV_CMD_NAV_LOITER_TURNS:
// case MAV_CMD_NAV_LOITER_UNLIM:
// case MAV_CMD_NAV_ORIENTATION_TARGET:
// case MAV_CMD_NAV_PATHPLANNING:
// case MAV_CMD_NAV_RETURN_TO_LAUNCH:
// case MAV_CMD_NAV_TAKEOFF:
default:
// unhandled command, skip
Serial.println("unhandled command");
nextCommand();
break;
}
}
private:
RangeFinder * _rangeFinderFront;
RangeFinder * _rangeFinderBack;

View File

@ -8,20 +8,9 @@
#ifndef AP_HARDWAREABSTRACTIONLAYER_H_
#define AP_HARDWAREABSTRACTIONLAYER_H_
#include "../AP_Common/AP_Common.h"
#include "../FastSerial/FastSerial.h"
#include "../AP_Common/AP_Vector.h"
#include "../GCS_MAVLink/GCS_MAVLink.h"
#include "../AP_ADC/AP_ADC.h"
#include "../AP_IMU/AP_IMU.h"
#include "../AP_GPS/GPS.h"
#include "../APM_BMP085/APM_BMP085.h"
#include "../AP_Compass/AP_Compass.h"
#include "AP_RcChannel.h"
#include "../AP_RangeFinder/AP_RangeFinder.h"
#include "../GCS_MAVLink/GCS_MAVLink.h"
class AP_ADC;
class IMU;
class GPS;
@ -29,11 +18,13 @@ class APM_BMP085_Class;
class Compass;
class BetterStream;
class RangeFinder;
class FastSerial;
namespace apo {
class AP_RcChannel;
class AP_CommLink;
class AP_BatteryMonitor;
// enumerations
enum halMode_t {
@ -50,9 +41,12 @@ class AP_HardwareAbstractionLayer {
public:
// default ctors on pointers called on pointers here, this
// allows NULL to be used as a boolean for if the device was
// initialized
AP_HardwareAbstractionLayer(halMode_t mode, board_t board,
vehicle_t vehicle, uint8_t heartBeatTimeout) :
adc(), gps(), baro(), compass(), rangeFinders(), imu(), rc(), gcs(),
adc(), gps(), baro(), compass(), rangeFinders(), imu(), batteryMonitor(), rc(), gcs(),
hil(), debug(), load(), lastHeartBeat(),
_heartBeatTimeout(heartBeatTimeout), _mode(mode),
_board(board), _vehicle(vehicle), _state(MAV_STATE_UNINIT) {
@ -98,6 +92,7 @@ public:
Compass * compass;
Vector<RangeFinder *> rangeFinders;
IMU * imu;
AP_BatteryMonitor * batteryMonitor;
/**
* Radio Channels

View File

@ -6,3 +6,189 @@
*/
#include "AP_Navigator.h"
#include "../FastSerial/FastSerial.h"
#include "AP_HardwareAbstractionLayer.h"
#include "../AP_DCM/AP_DCM.h"
#include "../AP_Math/AP_Math.h"
#include "../AP_Compass/AP_Compass.h"
#include "AP_MavlinkCommand.h"
#include "AP_Var_keys.h"
#include "../AP_RangeFinder/AP_RangeFinder.h"
#include "../AP_IMU/AP_IMU.h"
#include "../APM_BMP085/APM_BMP085.h"
namespace apo {
AP_Navigator::AP_Navigator(AP_HardwareAbstractionLayer * hal) :
_hal(hal), _timeStamp(0), _roll(0), _rollRate(0), _pitch(0),
_pitchRate(0), _yaw(0), _yawRate(0), _airSpeed(0),
_groundSpeed(0), _vD(0), _lat_degInt(0),
_lon_degInt(0), _alt_intM(0) {
}
void AP_Navigator::calibrate() {
}
float AP_Navigator::getPD() const {
return AP_MavlinkCommand::home.getPD(getAlt_intM());
}
float AP_Navigator::getPE() const {
return AP_MavlinkCommand::home.getPE(getLat_degInt(), getLon_degInt());
}
float AP_Navigator::getPN() const {
return AP_MavlinkCommand::home.getPN(getLat_degInt(), getLon_degInt());
}
void AP_Navigator::setPD(float _pD) {
setAlt(AP_MavlinkCommand::home.getAlt(_pD));
}
void AP_Navigator::setPE(float _pE) {
setLat(AP_MavlinkCommand::home.getLat(_pE));
}
void AP_Navigator::setPN(float _pN) {
setLon(AP_MavlinkCommand::home.getLon(_pN));
}
DcmNavigator::DcmNavigator(AP_HardwareAbstractionLayer * hal) :
AP_Navigator(hal), _dcm(), _imuOffsetAddress(0) {
// if orientation equal to front, store as front
/**
* rangeFinder<direction> is assigned values based on orientation which
* is specified in ArduPilotOne.pde.
*/
for (uint8_t i = 0; i < _hal-> rangeFinders.getSize(); i++) {
if (_hal->rangeFinders[i] == NULL)
continue;
if (_hal->rangeFinders[i]->orientation_x == 0
&& _hal->rangeFinders[i]->orientation_y == 0
&& _hal->rangeFinders[i]->orientation_z == 1)
_rangeFinderDown = _hal->rangeFinders[i];
}
if (_hal->getMode() == MODE_LIVE) {
if (_hal->adc)
_hal->imu = new AP_IMU_Oilpan(_hal->adc, k_sensorCalib);
if (_hal->imu)
_dcm = new AP_DCM(_hal->imu, _hal->gps, _hal->compass);
if (_hal->compass) {
_dcm->set_compass(_hal->compass);
}
}
}
void DcmNavigator::calibrate() {
AP_Navigator::calibrate();
// TODO: handle cold/warm restart
if (_hal->imu) {
_hal->imu->init(IMU::COLD_START,delay);
}
}
void DcmNavigator::updateFast(float dt) {
if (_hal->getMode() != MODE_LIVE)
return;
setTimeStamp(micros()); // if running in live mode, record new time stamp
//_hal->debug->println_P(PSTR("nav loop"));
/**
* The altitued is read off the barometer by implementing the following formula:
* altitude (in m) = 44330*(1-(p/po)^(1/5.255)),
* where, po is pressure in Pa at sea level (101325 Pa).
* See http://www.sparkfun.com/tutorials/253 or type this formula
* in a search engine for more information.
* altInt contains the altitude in meters.
*/
if (_hal->baro) {
if (_rangeFinderDown != NULL && _rangeFinderDown->distance <= 695)
setAlt(_rangeFinderDown->distance);
else {
float tmp = (_hal->baro->Press / 101325.0);
tmp = pow(tmp, 0.190295);
//setAlt(44330 * (1.0 - tmp)); //sets the altitude in meters XXX wrong, baro reads 0 press
setAlt(0.0);
}
}
// dcm class for attitude
if (_dcm) {
_dcm->update_DCM();
setRoll(_dcm->roll);
setPitch(_dcm->pitch);
setYaw(_dcm->yaw);
setRollRate(_dcm->get_gyro().x);
setPitchRate(_dcm->get_gyro().y);
setYawRate(_dcm->get_gyro().z);
/*
* accel/gyro debug
*/
/*
Vector3f accel = _hal->imu->get_accel();
Vector3f gyro = _hal->imu->get_gyro();
Serial.printf_P(PSTR("accel: %f %f %f gyro: %f %f %f\n"),
accel.x,accel.y,accel.z,gyro.x,gyro.y,gyro.z);
*/
}
}
void DcmNavigator::updateSlow(float dt) {
if (_hal->getMode() != MODE_LIVE)
return;
setTimeStamp(micros()); // if running in live mode, record new time stamp
if (_hal->gps) {
_hal->gps->update();
updateGpsLight();
if (_hal->gps->fix && _hal->gps->new_data) {
setLat_degInt(_hal->gps->latitude);
setLon_degInt(_hal->gps->longitude);
setAlt_intM(_hal->gps->altitude * 10); // gps in cm, intM in mm
setGroundSpeed(_hal->gps->ground_speed / 100.0); // gps is in cm/s
}
}
if (_hal->compass) {
_hal->compass->read();
_hal->compass->calculate(_dcm->get_dcm_matrix());
_hal->compass->null_offsets(_dcm->get_dcm_matrix());
//_hal->debug->printf_P(PSTR("heading: %f"), _hal->compass->heading);
}
}
void DcmNavigator::updateGpsLight(void) {
// GPS LED on if we have a fix or Blink GPS LED if we are receiving data
// ---------------------------------------------------------------------
static bool GPS_light = false;
switch (_hal->gps->status()) {
case (2):
//digitalWrite(C_LED_PIN, HIGH); //Turn LED C on when gps has valid fix.
break;
case (1):
if (_hal->gps->valid_read == true) {
GPS_light = !GPS_light; // Toggle light on and off to indicate gps messages being received, but no GPS fix lock
if (GPS_light) {
digitalWrite(_hal->cLedPin, LOW);
} else {
digitalWrite(_hal->cLedPin, HIGH);
}
_hal->gps->valid_read = false;
}
break;
default:
digitalWrite(_hal->cLedPin, LOW);
break;
}
}
} // namespace apo

View File

@ -19,54 +19,30 @@
#ifndef AP_Navigator_H
#define AP_Navigator_H
#include "AP_HardwareAbstractionLayer.h"
#include "../AP_DCM/AP_DCM.h"
#include "../AP_Math/AP_Math.h"
#include "../AP_Compass/AP_Compass.h"
#include "AP_MavlinkCommand.h"
#include "constants.h"
#include "AP_Var_keys.h"
#include "../AP_RangeFinder/AP_RangeFinder.h"
#include "../AP_IMU/AP_IMU.h"
#include <inttypes.h>
class RangeFinder;
class IMU;
class AP_DCM;
namespace apo {
class AP_HardwareAbstractionLayer;
/// Navigator class
class AP_Navigator {
public:
AP_Navigator(AP_HardwareAbstractionLayer * hal) :
_hal(hal), _timeStamp(0), _roll(0), _rollRate(0), _pitch(0),
_pitchRate(0), _yaw(0), _yawRate(0), _airSpeed(0),
_groundSpeed(0), _vD(0), _lat_degInt(0),
_lon_degInt(0), _alt_intM(0) {
}
virtual void calibrate() {
}
AP_Navigator(AP_HardwareAbstractionLayer * hal);
virtual void calibrate();
virtual void updateFast(float dt) = 0;
virtual void updateSlow(float dt) = 0;
float getPD() const {
return AP_MavlinkCommand::home.getPD(getAlt_intM());
}
float getPE() const {
return AP_MavlinkCommand::home.getPE(getLat_degInt(), getLon_degInt());
}
float getPN() const {
return AP_MavlinkCommand::home.getPN(getLat_degInt(), getLon_degInt());
}
void setPD(float _pD) {
setAlt(AP_MavlinkCommand::home.getAlt(_pD));
}
void setPE(float _pE) {
setLat(AP_MavlinkCommand::home.getLat(_pE));
}
void setPN(float _pN) {
setLon(AP_MavlinkCommand::home.getLon(_pN));
}
float getPD() const;
float getPE() const;
float getPN() const;
void setPD(float _pD);
void setPE(float _pE);
void setPN(float _pN);
float getAirSpeed() const {
return _airSpeed;
@ -241,146 +217,11 @@ private:
uint16_t _imuOffsetAddress;
public:
DcmNavigator(AP_HardwareAbstractionLayer * hal) :
AP_Navigator(hal), _dcm(), _imuOffsetAddress(0) {
// if orientation equal to front, store as front
/**
* rangeFinder<direction> is assigned values based on orientation which
* is specified in ArduPilotOne.pde.
*/
for (uint8_t i = 0; i < _hal-> rangeFinders.getSize(); i++) {
if (_hal->rangeFinders[i] == NULL)
continue;
if (_hal->rangeFinders[i]->orientation_x == 0
&& _hal->rangeFinders[i]->orientation_y == 0
&& _hal->rangeFinders[i]->orientation_z == 1)
_rangeFinderDown = _hal->rangeFinders[i];
}
if (_hal->getMode() == MODE_LIVE) {
if (_hal->adc)
_hal->imu = new AP_IMU_Oilpan(_hal->adc, k_sensorCalib);
if (_hal->imu)
_dcm = new AP_DCM(_hal->imu, _hal->gps, _hal->compass);
if (_hal->compass) {
_dcm->set_compass(_hal->compass);
}
}
}
virtual void calibrate() {
AP_Navigator::calibrate();
// TODO: handle cold/warm restart
if (_hal->imu) {
_hal->imu->init(IMU::COLD_START,delay);
}
}
virtual void updateFast(float dt) {
if (_hal->getMode() != MODE_LIVE)
return;
setTimeStamp(micros()); // if running in live mode, record new time stamp
//_hal->debug->println_P(PSTR("nav loop"));
/**
* The altitued is read off the barometer by implementing the following formula:
* altitude (in m) = 44330*(1-(p/po)^(1/5.255)),
* where, po is pressure in Pa at sea level (101325 Pa).
* See http://www.sparkfun.com/tutorials/253 or type this formula
* in a search engine for more information.
* altInt contains the altitude in meters.
*/
if (_hal->baro) {
if (_rangeFinderDown != NULL && _rangeFinderDown->distance <= 695)
setAlt(_rangeFinderDown->distance);
else {
float tmp = (_hal->baro->Press / 101325.0);
tmp = pow(tmp, 0.190295);
//setAlt(44330 * (1.0 - tmp)); //sets the altitude in meters XXX wrong, baro reads 0 press
setAlt(0.0);
}
}
// dcm class for attitude
if (_dcm) {
_dcm->update_DCM();
setRoll(_dcm->roll);
setPitch(_dcm->pitch);
setYaw(_dcm->yaw);
setRollRate(_dcm->get_gyro().x);
setPitchRate(_dcm->get_gyro().y);
setYawRate(_dcm->get_gyro().z);
/*
* accel/gyro debug
*/
/*
Vector3f accel = _hal->imu->get_accel();
Vector3f gyro = _hal->imu->get_gyro();
Serial.printf_P(PSTR("accel: %f %f %f gyro: %f %f %f\n"),
accel.x,accel.y,accel.z,gyro.x,gyro.y,gyro.z);
*/
}
}
virtual void updateSlow(float dt) {
if (_hal->getMode() != MODE_LIVE)
return;
setTimeStamp(micros()); // if running in live mode, record new time stamp
if (_hal->gps) {
_hal->gps->update();
updateGpsLight();
if (_hal->gps->fix && _hal->gps->new_data) {
setLat_degInt(_hal->gps->latitude);
setLon_degInt(_hal->gps->longitude);
setAlt_intM(_hal->gps->altitude * 10); // gps in cm, intM in mm
setGroundSpeed(_hal->gps->ground_speed / 100.0); // gps is in cm/s
}
}
if (_hal->compass) {
_hal->compass->read();
_hal->compass->calculate(_dcm->get_dcm_matrix());
_hal->compass->null_offsets(_dcm->get_dcm_matrix());
//_hal->debug->printf_P(PSTR("heading: %f"), _hal->compass->heading);
}
}
void updateGpsLight(void) {
// GPS LED on if we have a fix or Blink GPS LED if we are receiving data
// ---------------------------------------------------------------------
static bool GPS_light = false;
switch (_hal->gps->status()) {
case (2):
//digitalWrite(C_LED_PIN, HIGH); //Turn LED C on when gps has valid fix.
break;
case (1):
if (_hal->gps->valid_read == true) {
GPS_light = !GPS_light; // Toggle light on and off to indicate gps messages being received, but no GPS fix lock
if (GPS_light) {
digitalWrite(_hal->cLedPin, LOW);
} else {
digitalWrite(_hal->cLedPin, HIGH);
}
_hal->gps->valid_read = false;
}
break;
default:
digitalWrite(_hal->cLedPin, LOW);
break;
}
}
DcmNavigator(AP_HardwareAbstractionLayer * hal);
virtual void calibrate();
virtual void updateFast(float dt);
virtual void updateSlow(float dt);
void updateGpsLight(void);
};
} // namespace apo

View File

@ -30,7 +30,7 @@ public:
Vector<Loop *> & subLoops() {
return _subLoops;
}
uint32_t frequency() {
float frequency() {
return 1.0e6/_period;
}
void frequency(float _frequency) {
@ -45,7 +45,7 @@ public:
uint8_t load() {
return _load;
}
private:
protected:
void (*_fptr)(void *);
void * _data;
uint32_t _period;