ardupilot/libraries/SITL/SIM_Glider.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

204 lines
6.3 KiB
C
Raw Normal View History

2024-04-28 00:21:41 -03:00
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
Glider model for high altitude balloon drop
*/
#pragma once
#include "SIM_config.h"
#if AP_SIM_GLIDER_ENABLED
#include "SIM_Aircraft.h"
#include <AP_Param/AP_Param.h>
namespace SITL {
/*
a very simple plane simulator
*/
class Glider : public Aircraft {
public:
Glider(const char *frame_str);
/* update model by one time step */
virtual void update(const struct sitl_input &input) override;
/* static object creator */
static Aircraft *create(const char *frame_str) {
return NEW_NOTHROW Glider(frame_str);
2024-04-28 00:21:41 -03:00
}
bool on_ground() const override;
static const struct AP_Param::GroupInfo var_info[];
protected:
float alpharad;
float betarad;
AP_Float balloon_burst_amsl;
AP_Float balloon_rate;
/*
parameters that define the glider model
*/
const struct Model {
// total vehicle mass
float mass = 9.07441; // kg
// reference area
float Sref = 0.92762; // m^2
float refSpan = 1.827411; // m
float refChord = 0.507614; // m
float IXX = 0.234; // kg-m^2
float IYY = 1.85; // kg-m^2
float IZZ = 2.04; // kg-m^2
// CN is coefficients for forces on +Z axis
// quadratic in alpharad
float CN2 = -0.5771;
float CN1 = 3.9496;
float CN0 = 0;
// CA is the coefficients for forces on +X axis
// quadratic in alpharad
float CA2 = -1.6809;
float CA1 = -0.0057;
float CA0 = 0.0150;
// CY is the coefficients for forces on the +Y axis
// quadratic in alpharad, with betarad factor
float CY2 = -3.342;
float CY1 = 0.0227;
float CY0 = -0.4608;
// Cl is the coefficients for moments on X axis
// quadratic in alpharad, with betarad factor
float Cl2 = 0.2888;
float Cl1 = -0.8518;
float Cl0 = -0.0491;
// Cm is the coefficients for moments on Y axis
// quadratic in alpharad
float Cm2 = 0.099;
float Cm1 = -0.6506;
float Cm0 = -0.0005;
// Cn is the coefficients for moments on Z axis
// quadratic in alpharad, with betarad factor
float Cn2 = 0.0057;
float Cn1 = -0.0101;
float Cn0 = 0.1744;
// controls neutral dynamic derivatives
// p, q, r are gyro rates
float Cmq = -6.1866;
float Clp2 = 0.156;
float Clp1 = 0.0129;
float Clp0 = -0.315;
float Clr2 = -0.0284;
float Clr1 = 0.2641;
float Clr0 = 0.0343;
float Cnp2 = 0.0199;
float Cnp1 = -0.315;
float Cnp0 = -0.013;
float Cnr2 = 0.1297;
float Cnr1 = 0.0343;
float Cnr0 = -0.264;
// elevator
float elevatorDeflectionLimitDeg = -12.5;
float deltaCNperRadianElev = -0.7;
float deltaCAperRadianElev = 0.12;
float deltaCmperRadianElev = 1.39;
float deltaCYperRadianElev = 0;
float deltaClperRadianElev = 0;
float deltaCnperRadianElev = 0;
// rudder
float rudderDeflectionLimitDeg = 18.0;
float deltaCNperRadianRud = 0;
float deltaCAperRadianRud = 0.058;
float deltaCmperRadianRud = 0;
float deltaCYperRadianRud = 0.31;
float deltaClperRadianRud = 0.038;
float deltaCnperRadianRud = -0.174;
// aileron
float aileronDeflectionLimitDeg = 15.5;
float deltaCNperRadianAil = 0;
float deltaCAperRadianAil = 0.016;
float deltaCmperRadianAil = 0;
float deltaCYperRadianAil = -0.015;
// quadratic in alpharad
float deltaClperRadianAil0 = 0.09191;
float deltaClperRadianAil1 = 0.0001;
float deltaClperRadianAil2 = -0.08645;
// quadratic in alpharad
float deltaCnperRadianAil0 = 0.00789;
float deltaCnperRadianAil1 = 0.00773;
float deltaCnperRadianAil2 = -0.01162;
// Forces in the +X direction are CA * q * Sref
// Forces in the +Y direction are +CY * q * Sref
// Forces in the +Z direction are CN * q *Sref
// Moments about the X axis are +Cl * q * Sref * RefSpan
// Moments about the Y axis are +Cm * q * Sref * RefChord
// Moments about the Z axis are +Cn * q * Sref * RefSpan
// low altitude
float alphaRadMax = 0.209;
float betaRadMax = 0.209;
// balloon launch parameters
float tetherLength = 50.0f; // length of tether from balloon to aircraft (m)
float tetherPogoFreq = 2.0f; // measured vertical frequency of on tether (Hz)
} model;
Vector3f getForce(float inputAileron, float inputElevator, float inputRudder);
Vector3f getTorque(float inputAileron, float inputElevator, float inputRudder, const Vector3f &force) const;
bool update_balloon(float balloon, Vector3f &force, Vector3f &rot_accel);
void calculate_forces(const struct sitl_input &input, Vector3f &rot_accel, Vector3f &body_accel);
Vector3f balloon_velocity; // balloon velocity NED
Vector3f balloon_position{0.0f, 0.0f, -45.0f}; // balloon position NED from origin
enum class carriageState {
NONE = 0, // no carriage option available
WAITING_FOR_PICKUP = 1, // in launch cradle waiting to be picked up by launch vehicle
WAITING_FOR_RELEASE = 2, // being carried by luanch vehicle waitng to be released
PRE_RELEASE = 3, // had been released by launch vehicle
RELEASED = 4 // had been released by launch vehicle
} carriage_state;
bool plane_air_release; // true when plane has separated from the airborne launching platform
uint32_t last_drag_ms;
float sim_LD;
};
} // namespace SITL
#endif // AP_SIM_GLIDER_ENABLED