ardupilot/libraries/AP_BattMonitor/AP_BattMonitor.h

171 lines
7.3 KiB
C
Raw Normal View History

#pragma once
2013-09-28 10:35:27 -03:00
#include <AP_Common/AP_Common.h>
#include <AP_Param/AP_Param.h>
#include <AP_Math/AP_Math.h>
2017-04-08 00:27:31 -03:00
#include <GCS_MAVLink/GCS_MAVLink.h>
#include "AP_BattMonitor_Params.h"
2013-09-28 10:35:27 -03:00
// maximum number of battery monitors
#define AP_BATT_MONITOR_MAX_INSTANCES 2
// first monitor is always the primary monitor
#define AP_BATT_PRIMARY_INSTANCE 0
#define AP_BATT_SERIAL_NUMBER_DEFAULT -1
2013-09-28 10:35:27 -03:00
#define AP_BATT_MONITOR_TIMEOUT 5000
2017-05-23 04:12:58 -03:00
#define AP_BATT_MONITOR_RES_EST_TC_1 0.5f
#define AP_BATT_MONITOR_RES_EST_TC_2 0.1f
// declare backend class
class AP_BattMonitor_Backend;
class AP_BattMonitor_Analog;
class AP_BattMonitor_SMBus;
class AP_BattMonitor_SMBus_Solo;
class AP_BattMonitor_SMBus_Maxell;
class AP_BattMonitor_UAVCAN;
2013-09-28 10:35:27 -03:00
class AP_BattMonitor
{
friend class AP_BattMonitor_Backend;
friend class AP_BattMonitor_Analog;
friend class AP_BattMonitor_SMBus;
friend class AP_BattMonitor_SMBus_Solo;
friend class AP_BattMonitor_SMBus_Maxell;
friend class AP_BattMonitor_UAVCAN;
2013-09-28 10:35:27 -03:00
public:
AP_BattMonitor(uint32_t log_battery_bit);
/* Do not allow copies */
AP_BattMonitor(const AP_BattMonitor &other) = delete;
AP_BattMonitor &operator=(const AP_BattMonitor&) = delete;
2013-09-28 10:35:27 -03:00
static AP_BattMonitor &battery() {
return *_singleton;
}
2017-04-08 00:27:31 -03:00
struct cells {
uint16_t cells[MAVLINK_MSG_BATTERY_STATUS_FIELD_VOLTAGES_LEN];
};
// The BattMonitor_State structure is filled in by the backend driver
struct BattMonitor_State {
cells cell_voltages; // battery cell voltages in millivolts, 10 cells matches the MAVLink spec
float voltage; // voltage in volts
float current_amps; // current in amperes
float current_total_mah; // total current draw since start-up
float consumed_wh; // total energy consumed in Wh since start-up
uint32_t last_time_micros; // time when voltage and current was last read
uint32_t low_voltage_start_ms; // time when voltage dropped below the minimum
float temperature; // battery temperature in celsius
uint32_t temperature_time; // timestamp of the last recieved temperature message
2017-05-23 04:12:58 -03:00
float voltage_resting_estimate; // voltage with sag removed based on current and resistance estimate
float resistance; // resistance calculated by comparing resting voltage vs in flight voltage
bool healthy; // battery monitor is communicating correctly
};
// Return the number of battery monitor instances
uint8_t num_instances(void) const { return _num_instances; }
// detect and initialise any available battery monitors
2013-09-28 10:35:27 -03:00
void init();
/// Read the battery voltage and current for all batteries. Should be called at 10hz
2013-09-28 10:35:27 -03:00
void read();
// healthy - returns true if monitor is functioning
bool healthy(uint8_t instance) const;
bool healthy() const { return healthy(AP_BATT_PRIMARY_INSTANCE); }
2013-09-28 10:35:27 -03:00
/// has_consumed_energy - returns true if battery monitor instance provides consumed energy info
bool has_consumed_energy(uint8_t instance) const;
bool has_consumed_energy() const { return has_consumed_energy(AP_BATT_PRIMARY_INSTANCE); }
/// has_current - returns true if battery monitor instance provides current info
bool has_current(uint8_t instance) const;
bool has_current() const { return has_current(AP_BATT_PRIMARY_INSTANCE); }
/// voltage - returns battery voltage in millivolts
float voltage(uint8_t instance) const;
float voltage() const { return voltage(AP_BATT_PRIMARY_INSTANCE); }
2013-09-28 10:35:27 -03:00
2017-05-23 04:12:58 -03:00
/// get voltage with sag removed (based on battery current draw and resistance)
/// this will always be greater than or equal to the raw voltage
2017-05-23 04:12:58 -03:00
float voltage_resting_estimate(uint8_t instance) const;
float voltage_resting_estimate() const { return voltage_resting_estimate(AP_BATT_PRIMARY_INSTANCE); }
/// current_amps - returns the instantaneous current draw in amperes
float current_amps(uint8_t instance) const;
float current_amps() const { return current_amps(AP_BATT_PRIMARY_INSTANCE); }
2013-09-28 10:35:27 -03:00
/// current_total_mah - returns total current drawn since start-up in amp-hours
float current_total_mah(uint8_t instance) const;
float current_total_mah() const { return current_total_mah(AP_BATT_PRIMARY_INSTANCE); }
2013-09-28 10:35:27 -03:00
/// consumed_wh - returns total energy drawn since start-up in watt-hours
float consumed_wh(uint8_t instance) const;
float consumed_wh() const { return consumed_wh(AP_BATT_PRIMARY_INSTANCE); }
2013-09-28 10:35:27 -03:00
/// capacity_remaining_pct - returns the % battery capacity remaining (0 ~ 100)
virtual uint8_t capacity_remaining_pct(uint8_t instance) const;
uint8_t capacity_remaining_pct() const { return capacity_remaining_pct(AP_BATT_PRIMARY_INSTANCE); }
/// pack_capacity_mah - returns the capacity of the battery pack in mAh when the pack is full
int32_t pack_capacity_mah(uint8_t instance) const;
int32_t pack_capacity_mah() const { return pack_capacity_mah(AP_BATT_PRIMARY_INSTANCE); }
/// exhausted - returns true if the battery's voltage remains below the low_voltage for 10 seconds or remaining capacity falls below min_capacity
bool exhausted(uint8_t instance, float low_voltage, float min_capacity_mah);
bool exhausted(float low_voltage, float min_capacity_mah) { return exhausted(AP_BATT_PRIMARY_INSTANCE, low_voltage, min_capacity_mah); }
2013-09-28 10:35:27 -03:00
2015-01-16 03:11:55 -04:00
/// get_type - returns battery monitor type
enum AP_BattMonitor_Params::BattMonitor_Type get_type() { return get_type(AP_BATT_PRIMARY_INSTANCE); }
enum AP_BattMonitor_Params::BattMonitor_Type get_type(uint8_t instance) { return _params[instance].type(); }
2015-01-16 03:11:55 -04:00
/// set_monitoring - sets the monitor type (used for example sketch only)
void set_monitoring(uint8_t instance, uint8_t mon) { _params[instance]._type.set(mon); }
/// true when (voltage * current) > watt_max
bool overpower_detected() const;
bool overpower_detected(uint8_t instance) const;
2017-04-08 00:27:31 -03:00
// cell voltages
bool has_cell_voltages() { return has_cell_voltages(AP_BATT_PRIMARY_INSTANCE); }
bool has_cell_voltages(const uint8_t instance) const;
const cells & get_cell_voltages() const { return get_cell_voltages(AP_BATT_PRIMARY_INSTANCE); }
2017-04-08 00:27:31 -03:00
const cells & get_cell_voltages(const uint8_t instance) const;
// temperature
bool get_temperature(float &temperature) const { return get_temperature(temperature, AP_BATT_PRIMARY_INSTANCE); };
bool get_temperature(float &temperature, const uint8_t instance) const;
2017-05-23 04:12:58 -03:00
// get battery resistance estimate in ohms
float get_resistance() const { return get_resistance(AP_BATT_PRIMARY_INSTANCE); }
float get_resistance(uint8_t instance) const { return state[instance].resistance; }
2013-09-28 10:35:27 -03:00
static const struct AP_Param::GroupInfo var_info[];
protected:
/// parameters
AP_BattMonitor_Params _params[AP_BATT_MONITOR_MAX_INSTANCES];
private:
static AP_BattMonitor *_singleton;
BattMonitor_State state[AP_BATT_MONITOR_MAX_INSTANCES];
AP_BattMonitor_Backend *drivers[AP_BATT_MONITOR_MAX_INSTANCES];
uint32_t _log_battery_bit;
uint8_t _num_instances; /// number of monitors
void convert_params(void);
2013-09-28 10:35:27 -03:00
};
namespace AP {
AP_BattMonitor &battery();
};