ardupilot/libraries/AC_PrecLand/PosVelEKF.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

118 lines
3.8 KiB
C++
Raw Normal View History

#include "PosVelEKF.h"
#include <math.h>
#include <string.h>
2021-06-02 07:39:11 -03:00
// Initialize the covariance and state matrix
// This is called when the landing target is located for the first time or it was lost, then relocated
void PosVelEKF::init(float pos, float posVar, float vel, float velVar)
{
_state[0] = pos;
_state[1] = vel;
_cov[0] = posVar;
_cov[1] = 0.0f;
_cov[2] = velVar;
}
2021-06-02 07:39:11 -03:00
// This functions runs the Prediction Step of the EKF
// This is called at 400 hz
void PosVelEKF::predict(float dt, float dVel, float dVelNoise)
{
2021-06-02 07:39:11 -03:00
// Newly predicted state and covariance matrix at next time step
float newState[2];
float newCov[3];
2021-06-02 07:39:11 -03:00
// We assume the following state model for this problem
newState[0] = dt*_state[1] + _state[0];
newState[1] = dVel + _state[1];
/*
The above state model is broken down into the needed EKF form:
newState = A*OldState + B*u
Taking jacobian with respect to state, we derive the A (or F) matrix.
A = F = |1 dt|
|0 1|
B = |0|
|1|
u = dVel
Covariance Matrix is ALWAYS symmetric, therefore the following matrix is assumed:
P = Covariance Matrix = |cov[0] cov[1]|
|cov[1] cov[2]|
newCov = F * P * F.transpose + Q
Q = |0 0 |
|0 dVelNoise^2|
Post algebraic operations, and converting it to a upper triangular matrix (because of symmetry)
The Updated covariance matrix is of the following form:
*/
newCov[0] = dt*_cov[1] + dt*(dt*_cov[2] + _cov[1]) + _cov[0];
newCov[1] = dt*_cov[2] + _cov[1];
newCov[2] = ((dVelNoise)*(dVelNoise)) + _cov[2];
2021-06-02 07:39:11 -03:00
// store the predicted matrices
memcpy(_state,newState,sizeof(_state));
memcpy(_cov,newCov,sizeof(_cov));
}
2021-06-02 07:39:11 -03:00
// fuse the new sensor measurement into the EKF calculations
// This is called whenever we have a new measurement available
void PosVelEKF::fusePos(float pos, float posVar)
{
float newState[2];
float newCov[3];
2021-06-02 07:39:11 -03:00
// innovation_residual = new_sensor_readings - OldState
const float innovation_residual = pos - _state[0];
2021-06-02 07:39:11 -03:00
/*
Measurement matrix H = [1 0] since we are directly measuring pos only
Innovation Covariance = S = H * P * H.Transpose + R
Since this is a 1-D measurement, R = posVar, which is expected variance in postion sensor reading
Post multiplication this becomes:
*/
const float innovation_covariance = _cov[0] + posVar;
2021-06-02 07:39:11 -03:00
/*
Next step involves calculating the kalman gain "K"
K = P * H.transpose * S.inverse
After solving, this comes out to be:
K = | cov[0]/innovation_covariance |
| cov[1]/innovation_covariance |
Updated state estimate = OldState + K * innovation residual
This is calculated and simplified below
*/
newState[0] = _cov[0]*(innovation_residual)/(innovation_covariance) + _state[0];
newState[1] = _cov[1]*(innovation_residual)/(innovation_covariance) + _state[1];
2021-06-02 07:39:11 -03:00
/*
Updated covariance matrix = (I-K*H)*P
This is calculated and simplified below. Again, this is converted to upper triangular matrix (because of symmetry)
*/
newCov[0] = _cov[0] * posVar / innovation_covariance;
newCov[1] = _cov[1] * posVar / innovation_covariance;
newCov[2] = -_cov[1] * _cov[1] / innovation_covariance + _cov[2];
memcpy(_state,newState,sizeof(_state));
memcpy(_cov,newCov,sizeof(_cov));
}
2021-06-02 07:39:11 -03:00
// Returns normalized innovation squared
float PosVelEKF::getPosNIS(float pos, float posVar)
{
2021-06-02 07:39:11 -03:00
// NIS = innovation_residual.Transpose * Innovation_Covariance.Inverse * innovation_residual
const float innovation_residual = pos - _state[0];
const float innovation_covariance = _cov[0] + posVar;
2021-06-02 07:39:11 -03:00
const float NIS = (innovation_residual*innovation_residual)/(innovation_covariance);
return NIS;
}