ardupilot/APMrover2/test.pde

535 lines
14 KiB
Plaintext
Raw Normal View History

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#if CLI_ENABLED == ENABLED
// These are function definitions so the Menu can be constructed before the functions
// are defined below. Order matters to the compiler.
static int8_t test_radio_pwm(uint8_t argc, const Menu::arg *argv);
static int8_t test_radio(uint8_t argc, const Menu::arg *argv);
static int8_t test_passthru(uint8_t argc, const Menu::arg *argv);
static int8_t test_failsafe(uint8_t argc, const Menu::arg *argv);
static int8_t test_gps(uint8_t argc, const Menu::arg *argv);
static int8_t test_ins(uint8_t argc, const Menu::arg *argv);
static int8_t test_relay(uint8_t argc, const Menu::arg *argv);
static int8_t test_wp(uint8_t argc, const Menu::arg *argv);
static int8_t test_sonar(uint8_t argc, const Menu::arg *argv);
static int8_t test_mag(uint8_t argc, const Menu::arg *argv);
static int8_t test_modeswitch(uint8_t argc, const Menu::arg *argv);
static int8_t test_logging(uint8_t argc, const Menu::arg *argv);
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
static int8_t test_shell(uint8_t argc, const Menu::arg *argv);
#endif
// forward declaration to keep the compiler happy
static void test_wp_print(const AP_Mission::Mission_Command& cmd);
// Creates a constant array of structs representing menu options
// and stores them in Flash memory, not RAM.
// User enters the string in the console to call the functions on the right.
// See class Menu in AP_Common for implementation details
static const struct Menu::command test_menu_commands[] PROGMEM = {
{"pwm", test_radio_pwm},
{"radio", test_radio},
{"passthru", test_passthru},
{"failsafe", test_failsafe},
{"relay", test_relay},
{"waypoints", test_wp},
{"modeswitch", test_modeswitch},
// Tests below here are for hardware sensors only present
// when real sensors are attached or they are emulated
{"gps", test_gps},
{"ins", test_ins},
{"sonartest", test_sonar},
{"compass", test_mag},
{"logging", test_logging},
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
{"shell", test_shell},
#endif
};
// A Macro to create the Menu
MENU(test_menu, "test", test_menu_commands);
static int8_t
test_mode(uint8_t argc, const Menu::arg *argv)
{
cliSerial->printf_P(PSTR("Test Mode\n\n"));
test_menu.run();
return 0;
}
static void print_hit_enter()
{
cliSerial->printf_P(PSTR("Hit Enter to exit.\n\n"));
}
static int8_t
test_radio_pwm(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
delay(1000);
while(1){
delay(20);
// Filters radio input - adjust filters in the radio.pde file
// ----------------------------------------------------------
read_radio();
cliSerial->printf_P(PSTR("IN:\t1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\t8: %d\n"),
channel_steer->radio_in,
g.rc_2.radio_in,
channel_throttle->radio_in,
g.rc_4.radio_in,
g.rc_5.radio_in,
g.rc_6.radio_in,
g.rc_7.radio_in,
g.rc_8.radio_in);
if(cliSerial->available() > 0){
return (0);
}
}
}
static int8_t
test_passthru(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
delay(1000);
while(1){
delay(20);
// New radio frame? (we could use also if((millis()- timer) > 20)
2014-03-25 00:47:02 -03:00
if (hal.rcin->new_input()) {
cliSerial->print("CH:");
for(int i = 0; i < 8; i++){
2012-12-18 17:00:32 -04:00
cliSerial->print(hal.rcin->read(i)); // Print channel values
cliSerial->print(",");
2012-12-18 17:00:32 -04:00
hal.rcout->write(i, hal.rcin->read(i)); // Copy input to Servos
}
cliSerial->println();
}
if (cliSerial->available() > 0){
return (0);
}
}
return 0;
}
static int8_t
test_radio(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
delay(1000);
// read the radio to set trims
// ---------------------------
trim_radio();
while(1){
delay(20);
read_radio();
channel_steer->calc_pwm();
channel_throttle->calc_pwm();
// write out the servo PWM values
// ------------------------------
set_servos();
cliSerial->printf_P(PSTR("IN 1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\t8: %d\n"),
channel_steer->control_in,
g.rc_2.control_in,
channel_throttle->control_in,
g.rc_4.control_in,
g.rc_5.control_in,
g.rc_6.control_in,
g.rc_7.control_in,
g.rc_8.control_in);
if(cliSerial->available() > 0){
return (0);
}
}
}
static int8_t
test_failsafe(uint8_t argc, const Menu::arg *argv)
{
uint8_t fail_test;
print_hit_enter();
for(int i = 0; i < 50; i++){
delay(20);
read_radio();
}
// read the radio to set trims
// ---------------------------
trim_radio();
oldSwitchPosition = readSwitch();
cliSerial->printf_P(PSTR("Unplug battery, throttle in neutral, turn off radio.\n"));
while(channel_throttle->control_in > 0){
delay(20);
read_radio();
}
while(1){
delay(20);
read_radio();
if(channel_throttle->control_in > 0){
cliSerial->printf_P(PSTR("THROTTLE CHANGED %d \n"), channel_throttle->control_in);
fail_test++;
}
if (oldSwitchPosition != readSwitch()){
cliSerial->printf_P(PSTR("CONTROL MODE CHANGED: "));
2013-04-20 02:18:42 -03:00
print_mode(cliSerial, readSwitch());
cliSerial->println();
fail_test++;
}
if (g.fs_throttle_enabled && channel_throttle->get_failsafe()){
cliSerial->printf_P(PSTR("THROTTLE FAILSAFE ACTIVATED: %d, "), channel_throttle->radio_in);
2013-04-20 02:18:42 -03:00
print_mode(cliSerial, readSwitch());
cliSerial->println();
fail_test++;
}
if(fail_test > 0){
return (0);
}
if(cliSerial->available() > 0){
cliSerial->printf_P(PSTR("LOS caused no change in APM.\n"));
return (0);
}
}
}
static int8_t
test_relay(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
delay(1000);
while(1){
cliSerial->printf_P(PSTR("Relay on\n"));
2014-01-19 23:54:08 -04:00
relay.on(0);
delay(3000);
if(cliSerial->available() > 0){
return (0);
}
cliSerial->printf_P(PSTR("Relay off\n"));
2014-01-19 23:54:08 -04:00
relay.off(0);
delay(3000);
if(cliSerial->available() > 0){
return (0);
}
}
}
static int8_t
test_wp(uint8_t argc, const Menu::arg *argv)
{
delay(1000);
cliSerial->printf_P(PSTR("%u waypoints\n"), (unsigned)mission.num_commands());
cliSerial->printf_P(PSTR("Hit radius: %f\n"), g.waypoint_radius);
for(uint8_t i = 0; i < mission.num_commands(); i++){
AP_Mission::Mission_Command temp_cmd;
if (mission.read_cmd_from_storage(i,temp_cmd)) {
test_wp_print(temp_cmd);
}
}
return (0);
}
static void
test_wp_print(const AP_Mission::Mission_Command& cmd)
{
cliSerial->printf_P(PSTR("command #: %d id:%d options:%d p1:%d p2:%ld p3:%ld p4:%ld \n"),
(int)cmd.index,
(int)cmd.id,
(int)cmd.content.location.options,
(int)cmd.p1,
(long)cmd.content.location.alt,
(long)cmd.content.location.lat,
(long)cmd.content.location.lng);
}
static int8_t
test_modeswitch(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
delay(1000);
cliSerial->printf_P(PSTR("Control CH "));
cliSerial->println(MODE_CHANNEL, BASE_DEC);
while(1){
delay(20);
uint8_t switchPosition = readSwitch();
if (oldSwitchPosition != switchPosition){
cliSerial->printf_P(PSTR("Position %d\n"), switchPosition);
oldSwitchPosition = switchPosition;
}
if(cliSerial->available() > 0){
return (0);
}
}
}
/*
test the dataflash is working
*/
static int8_t
test_logging(uint8_t argc, const Menu::arg *argv)
{
cliSerial->println_P(PSTR("Testing dataflash logging"));
2013-02-22 19:14:35 -04:00
DataFlash.ShowDeviceInfo(cliSerial);
return 0;
}
//-------------------------------------------------------------------------------------------
// tests in this section are for real sensors or sensors that have been simulated
static int8_t
test_gps(uint8_t argc, const Menu::arg *argv)
{
2014-03-30 22:01:54 -03:00
print_hit_enter();
delay(1000);
uint32_t last_message_time_ms = 0;
while(1) {
delay(100);
gps.update();
if (gps.last_message_time_ms() != last_message_time_ms) {
last_message_time_ms = gps.last_message_time_ms();
const Location &loc = gps.location();
cliSerial->printf_P(PSTR("Lat: %ld, Lon %ld, Alt: %ldm, #sats: %d\n"),
(long)loc.lat,
(long)loc.lng,
(long)loc.alt/100,
(int)gps.num_sats());
} else {
cliSerial->printf_P(PSTR("."));
}
if(cliSerial->available() > 0) {
return (0);
}
}
}
static int8_t
test_ins(uint8_t argc, const Menu::arg *argv)
{
//cliSerial->printf_P(PSTR("Calibrating."));
2013-01-13 01:03:54 -04:00
ahrs.init();
ahrs.set_fly_forward(true);
2012-11-29 07:57:10 -04:00
ins.init(AP_InertialSensor::COLD_START,
2013-09-19 05:32:57 -03:00
ins_sample_rate);
ahrs.reset();
print_hit_enter();
delay(1000);
uint8_t medium_loopCounter = 0;
while(1){
ins.wait_for_sample(1000);
ahrs.update();
if(g.compass_enabled) {
medium_loopCounter++;
if(medium_loopCounter >= 5){
compass.read();
medium_loopCounter = 0;
}
}
// We are using the IMU
// ---------------------
Vector3f gyros = ins.get_gyro();
Vector3f accels = ins.get_accel();
cliSerial->printf_P(PSTR("r:%4d p:%4d y:%3d g=(%5.1f %5.1f %5.1f) a=(%5.1f %5.1f %5.1f)\n"),
(int)ahrs.roll_sensor / 100,
(int)ahrs.pitch_sensor / 100,
(uint16_t)ahrs.yaw_sensor / 100,
gyros.x, gyros.y, gyros.z,
accels.x, accels.y, accels.z);
}
if(cliSerial->available() > 0){
return (0);
}
}
static int8_t
test_mag(uint8_t argc, const Menu::arg *argv)
{
if (!g.compass_enabled) {
cliSerial->printf_P(PSTR("Compass: "));
print_enabled(false);
return (0);
}
if (!compass.init()) {
cliSerial->println_P(PSTR("Compass initialisation failed!"));
return 0;
}
2013-01-13 01:03:54 -04:00
ahrs.init();
ahrs.set_fly_forward(true);
ahrs.set_compass(&compass);
report_compass();
// we need the AHRS initialised for this test
2012-11-29 07:57:10 -04:00
ins.init(AP_InertialSensor::COLD_START,
2013-09-19 05:32:57 -03:00
ins_sample_rate);
ahrs.reset();
int counter = 0;
float heading = 0;
print_hit_enter();
uint8_t medium_loopCounter = 0;
while(1) {
ins.wait_for_sample(1000);
ahrs.update();
medium_loopCounter++;
if(medium_loopCounter >= 5){
if (compass.read()) {
// Calculate heading
Matrix3f m = ahrs.get_dcm_matrix();
heading = compass.calculate_heading(m);
compass.learn_offsets();
}
medium_loopCounter = 0;
}
counter++;
if (counter>20) {
2013-12-09 02:46:57 -04:00
if (compass.healthy()) {
2013-12-08 23:09:56 -04:00
const Vector3f mag_ofs = compass.get_offsets();
const Vector3f mag = compass.get_field();
cliSerial->printf_P(PSTR("Heading: %ld, XYZ: %.0f, %.0f, %.0f,\tXYZoff: %6.2f, %6.2f, %6.2f\n"),
2013-03-28 23:14:14 -03:00
(wrap_360_cd(ToDeg(heading) * 100)) /100,
2013-12-08 23:09:56 -04:00
mag.x, mag.y, mag.z,
mag_ofs.x, mag_ofs.y, mag_ofs.z);
} else {
cliSerial->println_P(PSTR("compass not healthy"));
}
counter=0;
}
if (cliSerial->available() > 0) {
break;
}
}
// save offsets. This allows you to get sane offset values using
// the CLI before you go flying.
cliSerial->println_P(PSTR("saving offsets"));
compass.save_offsets();
return (0);
}
//-------------------------------------------------------------------------------------------
// real sensors that have not been simulated yet go here
static int8_t
test_sonar(uint8_t argc, const Menu::arg *argv)
{
if (!sonar.enabled()) {
cliSerial->println_P(PSTR("WARNING: Sonar is not enabled"));
}
print_hit_enter();
init_sonar();
float sonar_dist_cm_min = 0.0f;
float sonar_dist_cm_max = 0.0f;
float voltage_min=0.0f, voltage_max = 0.0f;
float sonar2_dist_cm_min = 0.0f;
float sonar2_dist_cm_max = 0.0f;
float voltage2_min=0.0f, voltage2_max = 0.0f;
uint32_t last_print = 0;
while (true) {
delay(20);
uint32_t now = millis();
float dist_cm = sonar.distance_cm();
float voltage = sonar.voltage();
if (sonar_dist_cm_min == 0.0f) {
sonar_dist_cm_min = dist_cm;
voltage_min = voltage;
}
sonar_dist_cm_max = max(sonar_dist_cm_max, dist_cm);
sonar_dist_cm_min = min(sonar_dist_cm_min, dist_cm);
voltage_min = min(voltage_min, voltage);
voltage_max = max(voltage_max, voltage);
dist_cm = sonar2.distance_cm();
voltage = sonar2.voltage();
if (sonar2_dist_cm_min == 0.0f) {
sonar2_dist_cm_min = dist_cm;
voltage2_min = voltage;
}
sonar2_dist_cm_max = max(sonar2_dist_cm_max, dist_cm);
sonar2_dist_cm_min = min(sonar2_dist_cm_min, dist_cm);
voltage2_min = min(voltage2_min, voltage);
voltage2_max = max(voltage2_max, voltage);
if (now - last_print >= 200) {
cliSerial->printf_P(PSTR("sonar1 dist=%.1f:%.1fcm volt1=%.2f:%.2f sonar2 dist=%.1f:%.1fcm volt2=%.2f:%.2f\n"),
sonar_dist_cm_min,
sonar_dist_cm_max,
voltage_min,
voltage_max,
sonar2_dist_cm_min,
sonar2_dist_cm_max,
voltage2_min,
voltage2_max);
voltage_min = voltage_max = 0.0f;
voltage2_min = voltage2_max = 0.0f;
sonar_dist_cm_min = sonar_dist_cm_max = 0.0f;
sonar2_dist_cm_min = sonar2_dist_cm_max = 0.0f;
last_print = now;
}
if (cliSerial->available() > 0) {
break;
}
}
return (0);
}
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
/*
* run a debug shell
*/
static int8_t
test_shell(uint8_t argc, const Menu::arg *argv)
{
hal.util->run_debug_shell(cliSerial);
return 0;
}
#endif
#endif // CLI_ENABLED