ardupilot/libraries/AP_Compass/AP_Compass_HMC5843.cpp

269 lines
7.8 KiB
C++
Raw Normal View History

// -*- tab-width: 4; Mode: C++; c-basic-offset: 3; indent-tabs-mode: t -*-
/*
AP_Compass_HMC5843.cpp - Arduino Library for HMC5843 I2C magnetometer
Code by Jordi Muñoz and Jose Julio. DIYDrones.com
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
Sensor is conected to I2C port
Sensor is initialized in Continuos mode (10Hz)
Variables:
heading : magnetic heading
heading_x : magnetic heading X component
heading_y : magnetic heading Y component
mag_x : Raw X axis magnetometer data
mag_y : Raw Y axis magnetometer data
mag_z : Raw Z axis magnetometer data
last_update : the time of the last successful reading
Methods:
init() : Initialization of I2C and sensor
read() : Read Sensor data
calculate(float roll, float pitch) : Calculate tilt adjusted heading
set_orientation(const Matrix3f &rotation_matrix) : Set orientation of compass
set_offsets(int x, int y, int z) : Set adjustments for HardIron disturbances
set_declination(float radians) : Set heading adjustment between true north and magnetic north
To do : code optimization
Mount position : UPDATED
Big capacitor pointing backward, connector forward
*/
// AVR LibC Includes
#include <math.h>
#include "WConstants.h"
#include <Wire.h>
#include "AP_Compass_HMC5843.h"
#define COMPASS_ADDRESS 0x1E
#define ConfigRegA 0x00
#define ConfigRegB 0x01
#define magGain 0x20
#define PositiveBiasConfig 0x11
#define NegativeBiasConfig 0x12
#define NormalOperation 0x10
#define ModeRegister 0x02
#define ContinuousConversion 0x00
#define SingleConversion 0x01
// Constructors ////////////////////////////////////////////////////////////////
AP_Compass_HMC5843::AP_Compass_HMC5843() : orientation(0), declination(0.0)
{
// mag x y z offset initialisation
_offset.x = 0;
_offset.y = 0;
_offset.z = 0;
// initialise orientation matrix
orientation_matrix = ROTATION_NONE;
}
// Public Methods //////////////////////////////////////////////////////////////
bool AP_Compass_HMC5843::init(int initialise_wire_lib)
{
unsigned long currentTime = millis(); // record current time
int numAttempts = 0;
int success = 0;
first_call = 1;
if( initialise_wire_lib != 0 )
Wire.begin();
delay(10);
// calibration initialisation
calibration[0] = 1.0;
calibration[1] = 1.0;
calibration[2] = 1.0;
while( success == 0 && numAttempts < 5 )
{
// record number of attempts at initialisation
numAttempts++;
// force positiveBias (compass should return 715 for all channels)
Wire.beginTransmission(COMPASS_ADDRESS);
Wire.send(ConfigRegA);
Wire.send(PositiveBiasConfig);
if (0 != Wire.endTransmission())
continue; // compass not responding on the bus
delay(50);
// set gains
Wire.beginTransmission(COMPASS_ADDRESS);
Wire.send(ConfigRegB);
Wire.send(magGain);
Wire.endTransmission();
delay(10);
Wire.beginTransmission(COMPASS_ADDRESS);
Wire.send(ModeRegister);
Wire.send(SingleConversion);
Wire.endTransmission();
delay(10);
// read values from the compass
read();
delay(10);
// calibrate
if( abs(mag_x) > 500 && abs(mag_x) < 1000 && abs(mag_y) > 500 && abs(mag_y) < 1000 && abs(mag_z) > 500 && abs(mag_z) < 1000)
{
calibration[0] = fabs(715.0 / mag_x);
calibration[1] = fabs(715.0 / mag_y);
calibration[2] = fabs(715.0 / mag_z);
// mark success
success = 1;
}
// leave test mode
Wire.beginTransmission(COMPASS_ADDRESS);
Wire.send(ConfigRegA);
Wire.send(NormalOperation);
Wire.endTransmission();
delay(50);
Wire.beginTransmission(COMPASS_ADDRESS);
Wire.send(ModeRegister);
Wire.send(ContinuousConversion); // Set continuous mode (default to 10Hz)
Wire.endTransmission(); // End transmission
delay(50);
}
return(success);
}
// Read Sensor data
void AP_Compass_HMC5843::read()
{
int i = 0;
byte buff[6];
Vector3f rot_mag;
Wire.beginTransmission(COMPASS_ADDRESS);
Wire.send(0x03); //sends address to read from
Wire.endTransmission(); //end transmission
//Wire.beginTransmission(COMPASS_ADDRESS);
Wire.requestFrom(COMPASS_ADDRESS, 6); // request 6 bytes from device
while(Wire.available())
{
buff[i] = Wire.receive(); // receive one byte
i++;
}
Wire.endTransmission(); //end transmission
if (i==6) // All bytes received?
{
// MSB byte first, then LSB, X,Y,Z
mag_x = -((((int)buff[0]) << 8) | buff[1]) * calibration[0]; // X axis
mag_y = ((((int)buff[2]) << 8) | buff[3]) * calibration[1]; // Y axis
mag_z = -((((int)buff[4]) << 8) | buff[5]) * calibration[2]; // Z axis
last_update = millis(); // record time of update
// rotate the magnetometer values depending upon orientation
if( orientation == 0 )
rot_mag = Vector3f(mag_x,mag_y,mag_z);
else
rot_mag = orientation_matrix*Vector3f(mag_x,mag_y,mag_z);
rot_mag = rot_mag + _offset;
mag_x = rot_mag.x;
mag_y = rot_mag.y;
mag_z = rot_mag.z;
}
}
void AP_Compass_HMC5843::calculate(float roll, float pitch)
{
float headX;
float headY;
float cos_roll;
float sin_roll;
float cos_pitch;
float sin_pitch;
cos_roll = cos(roll); // Optimizacion, se puede sacar esto de la matriz DCM?
sin_roll = 1 - (cos_roll * cos_roll);
cos_pitch = cos(pitch);
sin_pitch = 1 - (cos_pitch * cos_pitch);
// Tilt compensated magnetic field X component:
headX = mag_x*cos_pitch+mag_y*sin_roll*sin_pitch+mag_z*cos_roll*sin_pitch;
// Tilt compensated magnetic field Y component:
headY = mag_y*cos_roll-mag_z*sin_roll;
// magnetic heading
heading = atan2(-headY,headX);
// Declination correction (if supplied)
if( declination != 0.0 )
{
heading = heading + declination;
if (heading > M_PI) // Angle normalization (-180 deg, 180 deg)
heading -= (2.0 * M_PI);
else if (heading < -M_PI)
heading += (2.0 * M_PI);
}
// Optimization for external DCM use. Calculate normalized components
heading_x = cos(heading);
heading_y = sin(heading);
}
void AP_Compass_HMC5843::null_offsets(Matrix3f dcm_matrix)
{
// Update our estimate of the offsets in the magnetometer
Vector3f calc(0.0, 0.0, 0.0);
Matrix3f dcm_new_from_last;
float weight;
Vector3f mag_body_new = Vector3f(mag_x,mag_y,mag_z);
if(!first_call) {
dcm_new_from_last = dcm_matrix.transposed() * last_dcm_matrix; // Note 11/20/2010: transpose() is not working, transposed() is.
weight = 3.0 - fabs(dcm_new_from_last.a.x) - fabs(dcm_new_from_last.b.y) - fabs(dcm_new_from_last.c.z);
if (weight > .001) {
calc = mag_body_new + mag_body_last; // Eq 11 from Bill P's paper
calc -= dcm_new_from_last * mag_body_last;
calc -= dcm_new_from_last.transposed() * mag_body_new;
if(weight > 0.5) weight = 0.5;
calc = calc * (weight);
_offset -= calc;
}
} else {
first_call = 0;
}
mag_body_last = mag_body_new - calc;
last_dcm_matrix = dcm_matrix;
}
void AP_Compass_HMC5843::set_orientation(const Matrix3f &rotation_matrix)
{
orientation_matrix = rotation_matrix;
if( orientation_matrix == ROTATION_NONE )
orientation = 0;
else
orientation = 1;
}
void AP_Compass_HMC5843::set_offsets(int x, int y, int z)
{
_offset.x = x;
_offset.y = y;
_offset.z = z;
}
void AP_Compass_HMC5843::set_declination(float radians)
{
declination = radians;
}