mirror of https://github.com/ArduPilot/ardupilot
196 lines
5.5 KiB
Plaintext
196 lines
5.5 KiB
Plaintext
|
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
||
|
|
||
|
//****************************************************************
|
||
|
// Function that will calculate the desired direction to fly and distance
|
||
|
//****************************************************************
|
||
|
static void navigate()
|
||
|
{
|
||
|
// do not navigate with corrupt data
|
||
|
// ---------------------------------
|
||
|
if (g_gps->fix == 0)
|
||
|
{
|
||
|
g_gps->new_data = false;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
#if HIL_MODE != HIL_MODE_ATTITUDE
|
||
|
if((next_WP.lat == 0)||(home_is_set==false)){
|
||
|
#else
|
||
|
if(next_WP.lat == 0){
|
||
|
#endif
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if(control_mode < INITIALISING) {
|
||
|
|
||
|
// waypoint distance from plane
|
||
|
// ----------------------------
|
||
|
wp_distance = get_distance(¤t_loc, &next_WP);
|
||
|
|
||
|
if (wp_distance < 0){
|
||
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("<navigate> WP error - distance < 0"));
|
||
|
//Serial.println(wp_distance,DEC);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// target_bearing is where we should be heading
|
||
|
// --------------------------------------------
|
||
|
target_bearing = get_bearing(¤t_loc, &next_WP);
|
||
|
|
||
|
// nav_bearing will includes xtrac correction
|
||
|
// ------------------------------------------
|
||
|
nav_bearing = target_bearing;
|
||
|
|
||
|
// check if we have missed the WP
|
||
|
loiter_delta = (target_bearing - old_target_bearing)/100;
|
||
|
|
||
|
// reset the old value
|
||
|
old_target_bearing = target_bearing;
|
||
|
|
||
|
// wrap values
|
||
|
if (loiter_delta > 180) loiter_delta -= 360;
|
||
|
if (loiter_delta < -180) loiter_delta += 360;
|
||
|
loiter_sum += abs(loiter_delta);
|
||
|
}
|
||
|
|
||
|
// control mode specific updates to nav_bearing
|
||
|
// --------------------------------------------
|
||
|
update_navigation();
|
||
|
}
|
||
|
|
||
|
|
||
|
#if 0
|
||
|
// Disabled for now
|
||
|
void calc_distance_error()
|
||
|
{
|
||
|
distance_estimate += (float)g_gps->ground_speed * .0002 * cos(radians(bearing_error * .01));
|
||
|
distance_estimate -= DST_EST_GAIN * (float)(distance_estimate - GPS_wp_distance);
|
||
|
wp_distance = max(distance_estimate,10);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
static void calc_gndspeed_undershoot()
|
||
|
{
|
||
|
// Function is overkill, but here in case we want to add filtering later
|
||
|
groundspeed_undershoot = (g.min_gndspeed > 0) ? (g.min_gndspeed - ground_speed) : 0;
|
||
|
}
|
||
|
|
||
|
static void calc_bearing_error()
|
||
|
{
|
||
|
if(takeoff_complete == true || g.compass_enabled == true) {
|
||
|
/*
|
||
|
most of the time we use the yaw sensor for heading, even if
|
||
|
we don't have a compass. The yaw sensor is drift corrected
|
||
|
in the DCM library. We only use the gps ground course
|
||
|
directly if we haven't completed takeoff, as the yaw drift
|
||
|
correction won't have had a chance to kick in. Drift
|
||
|
correction using the GPS typically takes 10 seconds or so
|
||
|
for a 180 degree correction.
|
||
|
*/
|
||
|
bearing_error = nav_bearing - ahrs.yaw_sensor;
|
||
|
} else {
|
||
|
|
||
|
// TODO: we need to use the Yaw gyro for in between GPS reads,
|
||
|
// maybe as an offset from a saved gryo value.
|
||
|
bearing_error = nav_bearing - ground_course;
|
||
|
}
|
||
|
|
||
|
bearing_error = wrap_180(bearing_error);
|
||
|
}
|
||
|
|
||
|
static void calc_altitude_error()
|
||
|
{
|
||
|
}
|
||
|
|
||
|
static long wrap_360(long error)
|
||
|
{
|
||
|
if (error > 36000) error -= 36000;
|
||
|
if (error < 0) error += 36000;
|
||
|
return error;
|
||
|
}
|
||
|
|
||
|
static long wrap_180(long error)
|
||
|
{
|
||
|
if (error > 18000) error -= 36000;
|
||
|
if (error < -18000) error += 36000;
|
||
|
return error;
|
||
|
}
|
||
|
|
||
|
static void calc_turn_radius() // JLN update - adjut automaticaly the wp_radius Vs the speed and the turn angle
|
||
|
{
|
||
|
wp_radius = g_gps->ground_speed * 150 / g.roll_limit.get();
|
||
|
//Serial.println(wp_radius, DEC);
|
||
|
}
|
||
|
|
||
|
static void update_loiter()
|
||
|
{
|
||
|
float power;
|
||
|
|
||
|
if(wp_distance <= g.loiter_radius){
|
||
|
power = float(wp_distance) / float(g.loiter_radius);
|
||
|
power = constrain(power, 0.5, 1);
|
||
|
nav_bearing += (int)(9000.0 * (2.0 + power));
|
||
|
}else if(wp_distance < (g.loiter_radius + LOITER_RANGE)){
|
||
|
power = -((float)(wp_distance - g.loiter_radius - LOITER_RANGE) / LOITER_RANGE);
|
||
|
power = constrain(power, 0.5, 1); //power = constrain(power, 0, 1);
|
||
|
nav_bearing -= power * 9000;
|
||
|
|
||
|
}else{
|
||
|
update_crosstrack();
|
||
|
loiter_time = millis(); // keep start time for loiter updating till we get within LOITER_RANGE of orbit
|
||
|
|
||
|
}
|
||
|
/*
|
||
|
if (wp_distance < g.loiter_radius){
|
||
|
nav_bearing += 9000;
|
||
|
}else{
|
||
|
nav_bearing -= 100 * M_PI / 180 * asin(g.loiter_radius / wp_distance);
|
||
|
}
|
||
|
|
||
|
update_crosstrack();
|
||
|
*/
|
||
|
nav_bearing = wrap_360(nav_bearing);
|
||
|
}
|
||
|
|
||
|
static void update_crosstrack(void)
|
||
|
{
|
||
|
// Crosstrack Error
|
||
|
// ----------------
|
||
|
if (abs(wrap_180(target_bearing - crosstrack_bearing)) < 4500) { // If we are too far off or too close we don't do track following
|
||
|
crosstrack_error = sin(radians((target_bearing - crosstrack_bearing) / (float)100)) * (float)wp_distance; // Meters we are off track line
|
||
|
nav_bearing += constrain(crosstrack_error * g.crosstrack_gain, -g.crosstrack_entry_angle.get(), g.crosstrack_entry_angle.get());
|
||
|
nav_bearing = wrap_360(nav_bearing);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void reset_crosstrack()
|
||
|
{
|
||
|
crosstrack_bearing = get_bearing(&prev_WP, &next_WP); // Used for track following
|
||
|
}
|
||
|
|
||
|
static long get_distance(struct Location *loc1, struct Location *loc2)
|
||
|
{
|
||
|
if(loc1->lat == 0 || loc1->lng == 0)
|
||
|
return -1;
|
||
|
if(loc2->lat == 0 || loc2->lng == 0)
|
||
|
return -1;
|
||
|
float dlat = (float)(loc2->lat - loc1->lat);
|
||
|
float dlong = ((float)(loc2->lng - loc1->lng)) * scaleLongDown;
|
||
|
return sqrt(sq(dlat) + sq(dlong)) * .01113195;
|
||
|
}
|
||
|
|
||
|
static long get_bearing(struct Location *loc1, struct Location *loc2)
|
||
|
{
|
||
|
long off_x = loc2->lng - loc1->lng;
|
||
|
long off_y = (loc2->lat - loc1->lat) * scaleLongUp;
|
||
|
long bearing = 9000 + atan2(-off_y, off_x) * 5729.57795;
|
||
|
if (bearing < 0) bearing += 36000;
|
||
|
return bearing;
|
||
|
}
|
||
|
|
||
|
void reached_waypoint()
|
||
|
{
|
||
|
|
||
|
}
|
||
|
|