ardupilot/libraries/SITL/examples/JSON/MATLAB/Copter/SIM_multicopter.m

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

197 lines
6.7 KiB
Mathematica
Raw Normal View History

clc
clearvars
close all
addpath(genpath('../../MATLAB'))
% Physics of a multi copter
% load in the parameters for a frame, generated by Copter.m
try
state = load('Hexsoon','copter');
catch
run('Copter.m')
fprintf('Could not find Hexsoon.mat file, running copter.m\n')
return
end
% Setup environmental conditions
state.environment.density = 1.225; % (kg/m^3)
state.gravity_mss = 9.80665; % (m/s^2)
% Setup the time step size for the Physics model
2020-05-29 11:22:19 -03:00
max_timestep = 1/50;
% define init and time setup functions
2020-05-29 11:22:19 -03:00
init_function = @init;
physics_function = @physics_step;
% setup connection
2020-05-29 11:22:19 -03:00
SITL_connector(state,init_function,physics_function,max_timestep);
% Simulator model must take and return a structure with the felids:
% gyro(roll, pitch, yaw) (radians/sec) body frame
% attitude(roll, pitch yaw) (radians)
% accel(north, east, down) (m/s^2) body frame
% velocity(north, east,down) (m/s) earth frame
% position(north, east, down) (m) earth frame
% the structure can have any other felids required for the physics model
% init values
function state = init(state)
for i = 1:numel(state.copter.motors)
state.copter.motors(i).rpm = 0;
state.copter.motors(i).current = 0;
end
2020-05-29 11:22:19 -03:00
state.gyro = [0;0;0]; % (rad/sec)
state.dcm = diag([1,1,1]); % direction cosine matrix
state.attitude = [0;0;0]; % (radians) (roll, pitch, yaw)
state.accel = [0;0;0]; % (m/s^2) body frame
state.velocity = [0;0;0]; % (m/s) earth frame
state.position = [0;0;0]; % (m) earth frame
state.bf_velo = [0;0;0]; % (m/s) body frame
end
% Take a physics time step
2020-05-29 11:22:19 -03:00
function state = physics_step(pwm_in,state)
% Calculate the dropped battery voltage, assume current draw from last step
state.copter.battery.current = sum([state.copter.motors.current]);
state.copter.battery.dropped_voltage = state.copter.battery.voltage - state.copter.battery.resistance * state.copter.battery.current;
% Calculate the torque and thrust, assume RPM is last step value
for i = 1:numel(state.copter.motors)
motor = state.copter.motors(i);
% Calculate the throttle
throttle = (pwm_in(motor.channel) - 1100) / 800;
throttle = max(throttle,0);
throttle = min(throttle,1);
% effective voltage
voltage = throttle * state.copter.battery.dropped_voltage;
% Take the RPM from the last step to calculate the new
% torque and current
Kt = 1/(motor.electrical.kv * ( (2*pi)/60) );
% rpm equation rearranged for current
current = ((motor.electrical.kv * voltage) - motor.rpm) / ((motor.electrical.resistance + motor.esc.resistance) * motor.electrical.kv);
torque = current * Kt;
prop_drag = motor.prop.PConst * state.environment.density * (motor.rpm/60)^2 * motor.prop.diameter^5;
w = motor.rpm * ((2*pi)/60); % convert to rad/sec
2020-05-29 11:22:19 -03:00
w1 = w + ((torque-prop_drag) / motor.prop.inertia) * state.delta_t;
rps = w1 * (1/(2*pi));
% can never have negative rps
rps = max(rps,0);
% Calculate the thrust (with fudge factor!)
thrust = 2.2 * motor.prop.TConst * state.environment.density * rps^2 * motor.prop.diameter^4;
% calculate resulting moments
moment_roll = thrust * motor.location(1);
moment_pitch = thrust * motor.location(2);
moment_yaw = -torque * motor.direction;
% Update main structure
state.copter.motors(i).torque = torque;
state.copter.motors(i).current = current;
state.copter.motors(i).rpm = rps * 60;
state.copter.motors(i).thrust = thrust;
state.copter.motors(i).moment_roll = moment_roll;
state.copter.motors(i).moment_pitch = moment_pitch;
state.copter.motors(i).moment_yaw = moment_yaw;
end
2020-05-29 11:22:19 -03:00
drag = sign(state.bf_velo) .* state.copter.cd .* state.copter.cd_ref_area .* 0.5 .* state.environment.density .* state.bf_velo.^2;
% Calculate the forces about the CG (N,E,D) (body frame)
2020-05-29 11:22:19 -03:00
force = [0;0;-sum([state.copter.motors.thrust])] - drag;
% estimate rotational drag
rotational_drag = 0.2 * sign(state.gyro) .* state.gyro.^2; % estimated to give a reasonable max rotation rate
% Update attitude, moments to rotational acceleration to rotational velocity to attitude
moments = [-sum([state.copter.motors.moment_roll]);sum([state.copter.motors.moment_pitch]);sum([state.copter.motors.moment_yaw])] - rotational_drag;
state = update_dynamics(state,force,moments);
end
% integrate the acceleration resulting from the forces and moments to get the
% new state
function state = update_dynamics(state,force,moments)
rot_accel = (moments' / state.copter.inertia)';
state.gyro = state.gyro + rot_accel * state.delta_t;
% Constrain to 2000 deg per second, this is what typical sensors max out at
state.gyro = max(state.gyro,deg2rad(-2000));
state.gyro = min(state.gyro,deg2rad(2000));
2020-05-29 11:22:19 -03:00
% update the dcm and attitude
[state.dcm, state.attitude] = rotate_dcm(state.dcm,state.gyro * state.delta_t);
% body frame accelerations
state.accel = force / state.copter.mass;
% earth frame accelerations (NED)
2020-05-29 11:22:19 -03:00
accel_ef = state.dcm * state.accel;
accel_ef(3) = accel_ef(3) + state.gravity_mss;
% if we're on the ground, then our vertical acceleration is limited
% to zero. This effectively adds the force of the ground on the aircraft
if state.position(3) >= 0 && accel_ef(3) > 0
accel_ef(3) = 0;
end
2020-05-29 11:22:19 -03:00
% work out acceleration as seen by the accelerometers. It sees the kinematic
% acceleration (ie. real movement), plus gravity
state.accel = state.dcm' * (accel_ef + [0; 0; -state.gravity_mss]);
state.velocity = state.velocity + accel_ef * state.delta_t;
state.position = state.position + state.velocity * state.delta_t;
% make sure we can't go underground (NED so underground is positive)
if state.position(3) >= 0
state.position(3) = 0;
2020-05-29 11:22:19 -03:00
state.velocity = [0;0;0];
state.gyro = [0;0;0];
end
2020-05-29 11:22:19 -03:00
% calculate the body frame velocity for drag calculation
state.bf_velo = state.dcm' * state.velocity;
end
2020-05-29 11:22:19 -03:00
function [dcm, euler] = rotate_dcm(dcm, ang)
% rotate
delta = [dcm(1,2) * ang(3) - dcm(1,3) * ang(2), dcm(1,3) * ang(1) - dcm(1,1) * ang(3), dcm(1,1) * ang(2) - dcm(1,2) * ang(1);
dcm(2,2) * ang(3) - dcm(2,3) * ang(2), dcm(2,3) * ang(1) - dcm(2,1) * ang(3), dcm(2,1) * ang(2) - dcm(2,2) * ang(1);
dcm(3,2) * ang(3) - dcm(3,3) * ang(2), dcm(3,3) * ang(1) - dcm(3,1) * ang(3), dcm(3,1) * ang(2) - dcm(3,2) * ang(1)];
dcm = dcm + delta;
% normalise
a = dcm(1,:);
b = dcm(2,:);
error = a * b';
t0 = a - (b *(0.5 * error));
t1 = b - (a *(0.5 * error));
t2 = cross(t0,t1);
dcm(1,:) = t0 * (1/norm(t0));
dcm(2,:) = t1 * (1/norm(t1));
dcm(3,:) = t2 * (1/norm(t2));
% calculate euler angles
euler = [atan2(dcm(3,2),dcm(3,3)); -asin(dcm(3,1)); atan2(dcm(2,1),dcm(1,1))];
end
2020-05-29 11:22:19 -03:00