ardupilot/libraries/AP_HAL_Linux/RCOutput_PCA9685.cpp

254 lines
6.7 KiB
C++
Raw Normal View History

#include <AP_HAL/AP_HAL.h>
#include "GPIO.h"
#if CONFIG_HAL_BOARD == HAL_BOARD_LINUX
#include "RCOutput_PCA9685.h"
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <dirent.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <math.h>
#define PCA9685_RA_MODE1 0x00
#define PCA9685_RA_MODE2 0x01
#define PCA9685_RA_LED0_ON_L 0x06
#define PCA9685_RA_LED0_ON_H 0x07
#define PCA9685_RA_LED0_OFF_L 0x08
#define PCA9685_RA_LED0_OFF_H 0x09
#define PCA9685_RA_ALL_LED_ON_L 0xFA
#define PCA9685_RA_ALL_LED_ON_H 0xFB
#define PCA9685_RA_ALL_LED_OFF_L 0xFC
#define PCA9685_RA_ALL_LED_OFF_H 0xFD
#define PCA9685_RA_PRE_SCALE 0xFE
#define PCA9685_MODE1_RESTART_BIT (1 << 7)
#define PCA9685_MODE1_EXTCLK_BIT (1 << 6)
#define PCA9685_MODE1_AI_BIT (1 << 5)
#define PCA9685_MODE1_SLEEP_BIT (1 << 4)
#define PCA9685_MODE1_SUB1_BIT (1 << 3)
#define PCA9685_MODE1_SUB2_BIT (1 << 2)
#define PCA9685_MODE1_SUB3_BIT (1 << 1)
#define PCA9685_MODE1_ALLCALL_BIT (1 << 0)
#define PCA9685_ALL_LED_OFF_H_SHUT (1 << 4)
#define PCA9685_MODE2_INVRT_BIT (1 << 4)
#define PCA9685_MODE2_OCH_BIT (1 << 3)
#define PCA9685_MODE2_OUTDRV_BIT (1 << 2)
#define PCA9685_MODE2_OUTNE1_BIT (1 << 1)
#define PCA9685_MODE2_OUTNE0_BIT (1 << 0)
/*
* Drift for internal oscillator
* see: https://github.com/diydrones/ardupilot/commit/50459bdca0b5a1adf95
* and https://github.com/adafruit/Adafruit-PWM-Servo-Driver-Library/issues/11
*/
#define PCA9685_INTERNAL_CLOCK (1.04f * 25000000.f)
#define PCA9685_EXTERNAL_CLOCK 24576000.f
using namespace Linux;
#define PWM_CHAN_COUNT 16
static const AP_HAL::HAL& hal = AP_HAL::get_HAL();
RCOutput_PCA9685::RCOutput_PCA9685(uint8_t addr,
bool external_clock,
uint8_t channel_offset,
int16_t oe_pin_number) :
_i2c_sem(NULL),
_enable_pin(NULL),
_frequency(50),
_pulses_buffer(new uint16_t[PWM_CHAN_COUNT - channel_offset]),
_addr(addr),
_external_clock(external_clock),
_channel_offset(channel_offset),
_oe_pin_number(oe_pin_number)
{
if (_external_clock)
_osc_clock = PCA9685_EXTERNAL_CLOCK;
else
_osc_clock = PCA9685_INTERNAL_CLOCK;
}
RCOutput_PCA9685::~RCOutput_PCA9685()
{
delete [] _pulses_buffer;
}
void RCOutput_PCA9685::init(void* machtnicht)
{
_i2c_sem = hal.i2c->get_semaphore();
if (_i2c_sem == NULL) {
hal.scheduler->panic(PSTR("PANIC: RCOutput_PCA9685 did not get "
"valid I2C semaphore!"));
return; /* never reached */
}
reset_all_channels();
/* Set the initial frequency */
set_freq(0, 50);
/* Enable PCA9685 PWM */
if (_oe_pin_number != -1) {
_enable_pin = hal.gpio->channel(_oe_pin_number);
_enable_pin->mode(HAL_GPIO_OUTPUT);
_enable_pin->write(0);
}
}
void RCOutput_PCA9685::reset_all_channels()
{
if (!_i2c_sem->take(10)) {
return;
}
uint8_t data[4] = {0x00, 0x00, 0x00, 0x00};
hal.i2c->writeRegisters(_addr, PCA9685_RA_ALL_LED_ON_L, 4, data);
/* Wait for the last pulse to end */
hal.scheduler->delay(2);
_i2c_sem->give();
}
void RCOutput_PCA9685::set_freq(uint32_t chmask, uint16_t freq_hz)
{
/* Correctly finish last pulses */
for (int i = 0; i < (PWM_CHAN_COUNT - _channel_offset); i++) {
write(i, _pulses_buffer[i]);
}
if (!_i2c_sem->take(10)) {
return;
}
/* Shutdown before sleeping.
* see p.14 of PCA9685 product datasheet
*/
hal.i2c->writeRegister(_addr, PCA9685_RA_ALL_LED_OFF_H, PCA9685_ALL_LED_OFF_H_SHUT);
/* Put PCA9685 to sleep (required to write prescaler) */
hal.i2c->writeRegister(_addr, PCA9685_RA_MODE1, PCA9685_MODE1_SLEEP_BIT);
/* Calculate prescale and save frequency using this value: it may be
* different from @freq_hz due to rounding/ceiling. We use ceil() rather
* than round() so the resulting frequency is never greater than @freq_hz
*/
uint8_t prescale = ceil(_osc_clock / (4096 * freq_hz)) - 1;
_frequency = _osc_clock / (4096 * (prescale + 1));
/* Write prescale value to match frequency */
hal.i2c->writeRegister(_addr, PCA9685_RA_PRE_SCALE, prescale);
if (_external_clock) {
/* Enable external clocking */
hal.i2c->writeRegister(_addr, PCA9685_RA_MODE1,
PCA9685_MODE1_SLEEP_BIT | PCA9685_MODE1_EXTCLK_BIT);
}
/* Restart the device to apply new settings and enable auto-incremented write */
hal.i2c->writeRegister(_addr, PCA9685_RA_MODE1,
PCA9685_MODE1_RESTART_BIT | PCA9685_MODE1_AI_BIT);
_i2c_sem->give();
}
uint16_t RCOutput_PCA9685::get_freq(uint8_t ch)
{
return _frequency;
}
void RCOutput_PCA9685::enable_ch(uint8_t ch)
{
}
void RCOutput_PCA9685::disable_ch(uint8_t ch)
{
write(ch, 0);
}
void RCOutput_PCA9685::write(uint8_t ch, uint16_t period_us)
{
if (ch >= (PWM_CHAN_COUNT - _channel_offset)) {
return;
}
_pulses_buffer[ch] = period_us;
_pending_write_mask |= (1U << ch);
if (!_corking)
push();
}
void RCOutput_PCA9685::cork()
{
_corking = true;
}
void RCOutput_PCA9685::push()
{
_corking = false;
if (_pending_write_mask == 0)
return;
// Calculate the number of channels for this transfer.
uint8_t max_ch = (sizeof(unsigned) * 8) - __builtin_clz(_pending_write_mask);
uint8_t min_ch = __builtin_ctz(_pending_write_mask);
/*
* scratch buffer size is always for all the channels, but we write only
* from min_ch to max_ch
*/
uint8_t data[PWM_CHAN_COUNT * 4] = { };
for (unsigned ch = min_ch; ch < max_ch; ch++) {
uint16_t period_us = _pulses_buffer[ch];
uint16_t length = 0;
if (period_us)
length = round((period_us * 4096) / (1000000.f / _frequency)) - 1;
uint8_t *d = &data[ch * 4];
*d++ = 0;
*d++ = 0;
*d++ = length & 0xFF;
*d++ = length >> 8;
}
if (!_i2c_sem->take_nonblocking()) {
hal.console->printf("RCOutput: Unable to get bus semaphore");
return;
}
hal.i2c->writeRegisters(_addr,
PCA9685_RA_LED0_ON_L + 4 * (_channel_offset + min_ch),
(max_ch - min_ch) * 4,
&data[min_ch * 4]);
_i2c_sem->give();
_pending_write_mask = 0;
}
uint16_t RCOutput_PCA9685::read(uint8_t ch)
{
return _pulses_buffer[ch];
}
void RCOutput_PCA9685::read(uint16_t* period_us, uint8_t len)
{
for (int i = 0; i < len; i++)
period_us[i] = read(0 + i);
}
#endif