ardupilot/ArduCopterMega/navigation.pde

213 lines
6.0 KiB
Plaintext
Raw Normal View History

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*-
//****************************************************************
// Function that will calculate the desired direction to fly and distance
//****************************************************************
void navigate()
{
// do not navigate with corrupt data
// ---------------------------------
if (GPS.fix == 0)
{
GPS.new_data = false;
return;
}
if(next_WP.lat == 0){
return;
}
// waypoint distance from plane
// ----------------------------
GPS_wp_distance = getDistance(&current_loc, &next_WP);
if (GPS_wp_distance < 0){
send_message(SEVERITY_HIGH,"<navigate> WP error - distance < 0");
//Serial.println(wp_distance,DEC);
//print_current_waypoints();
return;
}
// target_bearing is where we should be heading
// --------------------------------------------
target_bearing = get_bearing(&current_loc, &next_WP);
// nav_bearing will includes xtrack correction
// -------------------------------------------
nav_bearing = target_bearing;
// control mode specific updates to nav_bearing
// --------------------------------------------
update_navigation();
// calc pitch and roll to target
// -----------------------------
calc_nav();
}
void calc_nav()
{
/*
Becuase we are using lat and lon to do our distance errors here's a quick chart:
100 = 1m
1000 = 11m
10000 = 111m
pitch_max = 22° (2200)
*/
float cos_yaw = cos(dcm.yaw);
float sin_yaw = sin(dcm.yaw);
// ROLL
nav_lon = pid_nav_lon.get_pid((long)((float)(next_WP.lng - GPS.longitude) * scaleLongDown), dTnav, 1.0);
nav_lon = constrain(nav_lon, -pitch_max, pitch_max); // Limit max command
// PITCH
nav_lat = pid_nav_lat.get_pid(next_WP.lat - GPS.latitude, dTnav, 1.0);
nav_lat = constrain(nav_lat, -pitch_max, pitch_max); // Limit max command
// rotate the vector
nav_roll = (float)nav_lon * cos_yaw - (float)nav_lat * sin_yaw;
nav_pitch = (float)nav_lon * sin_yaw + (float)nav_lat * cos_yaw;
}
/*
void verify_missed_wp()
{
// check if we have missed the WP
loiter_delta = (target_bearing - old_target_bearing) / 100;
// reset the old value
old_target_bearing = target_bearing;
// wrap values
if (loiter_delta > 170) loiter_delta -= 360;
if (loiter_delta < -170) loiter_delta += 360;
loiter_sum += abs(loiter_delta);
}
*/
void calc_bearing_error()
{
bearing_error = nav_bearing - yaw_sensor;
bearing_error = wrap_180(bearing_error);
}
void calc_distance_error()
{
wp_distance = GPS_wp_distance;
// this wants to work only while moving, but it should filter out jumpy GPS reads
// scale gs to whole deg (50hz / 100) scale bearing error down to whole deg
//distance_estimate += (float)GPS.ground_speed * .0002 * cos(radians(bearing_error / 100));
//distance_estimate -= distance_gain * (float)(distance_estimate - GPS_wp_distance);
//wp_distance = distance_estimate;
}
/*void calc_airspeed_errors()
{
//airspeed_error = airspeed_cruise - airspeed;
//airspeed_energy_error = (long)(((long)airspeed_cruise * (long)airspeed_cruise) - ((long)airspeed * (long)airspeed))/20000; //Changed 0.00005f * to / 20000 to avoid floating point calculation
} */
// calculated at 50 hz
void calc_altitude_error()
{
altitude_error = next_WP.alt - current_loc.alt;
// limit climb rates
//target_altitude = next_WP.alt - ((float)((wp_distance -30) * offset_altitude) / (float)(wp_totalDistance - 30));
//if(prev_WP.alt > next_WP.alt){
// target_altitude = constrain(target_altitude, next_WP.alt, prev_WP.alt);
// }else{
// target_altitude = constrain(target_altitude, prev_WP.alt, next_WP.alt);
// }
// calc the GPS/Abs pressure altitude
//if(GPS.fix)
// pressure_altitude += altitude_gain * (float)(GPS.altitude - pressure_altitude);
//current_loc.alt = pressure_altitude;
// altitude_error = target_altitude - current_loc.alt;
//Serial.printf("s: %d %d t_alt %d\n", (int)current_loc.alt, (int)altitude_error, (int)target_altitude);
}
long wrap_360(long error)
{
if (error > 36000) error -= 36000;
if (error < 0) error += 36000;
return error;
}
long wrap_180(long error)
{
if (error > 18000) error -= 36000;
if (error < -18000) error += 36000;
return error;
}
/*
// disabled for now
void update_loiter()
{
loiter_delta = (target_bearing - old_target_bearing) / 100;
// reset the old value
old_target_bearing = target_bearing;
// wrap values
if (loiter_delta > 170) loiter_delta -= 360;
if (loiter_delta < -170) loiter_delta += 360;
loiter_sum += loiter_delta;
} */
void update_crosstrack(void)
{
// Crosstrack Error
// ----------------
if (abs(target_bearing - crosstrack_bearing) < 4500) { // If we are too far off or too close we don't do track following
crosstrack_error = sin(radians((target_bearing - crosstrack_bearing) / 100)) * wp_distance; // Meters we are off track line
nav_bearing += constrain(crosstrack_error * x_track_gain, -x_track_angle, x_track_angle);
nav_bearing = wrap_360(nav_bearing);
}
}
void reset_crosstrack()
{
crosstrack_bearing = get_bearing(&current_loc, &next_WP); // Used for track following
}
int get_altitude_above_home(void)
{
// This is the altitude above the home location
// The GPS gives us altitude at Sea Level
// if you slope soar, you should see a negative number sometimes
// -------------------------------------------------------------
return current_loc.alt - home.alt;
}
long getDistance(struct Location *loc1, struct Location *loc2)
{
if(loc1->lat == 0 || loc1->lng == 0)
return -1;
if(loc2->lat == 0 || loc2->lng == 0)
return -1;
float dlat = (float)(loc2->lat - loc1->lat);
float dlong = ((float)(loc2->lng - loc1->lng)) * scaleLongDown;
return sqrt(sq(dlat) + sq(dlong)) * .01113195;
}
long get_alt_distance(struct Location *loc1, struct Location *loc2)
{
return abs(loc1->alt - loc2->alt);
}
long get_bearing(struct Location *loc1, struct Location *loc2)
{
long off_x = loc2->lng - loc1->lng;
long off_y = (loc2->lat - loc1->lat) * scaleLongUp;
long bearing = 9000 + atan2(-off_y, off_x) * 5729.57795;
if (bearing < 0) bearing += 36000;
return bearing;
}