ardupilot/Tools/AP_Periph/rc_in.cpp

181 lines
6.0 KiB
C++
Raw Normal View History

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <AP_RCProtocol/AP_RCProtocol_config.h>
#ifdef HAL_PERIPH_ENABLE_RCIN
#ifndef AP_PERIPH_RC1_PORT_DEFAULT
#define AP_PERIPH_RC1_PORT_DEFAULT -1
#endif
#ifndef AP_PERIPH_RC1_PORT_OPTIONS_DEFAULT
#define AP_PERIPH_RC1_PORT_OPTIONS_DEFAULT 0
#endif
#include <AP_RCProtocol/AP_RCProtocol.h>
#include "AP_Periph.h"
#include <dronecan_msgs.h>
extern const AP_HAL::HAL &hal;
const AP_Param::GroupInfo Parameters_RCIN::var_info[] {
// RC_PROTOCOLS copied from RC_Channel/RC_Channels_Varinfo.h
// @Param: RC_PROTOCOLS
// @DisplayName: RC protocols enabled
// @Description: Bitmask of enabled RC protocols. Allows narrowing the protocol detection to only specific types of RC receivers which can avoid issues with incorrect detection. Set to 1 to enable all protocols.
// @User: Advanced
// @Bitmask: 0:All,1:PPM,2:IBUS,3:SBUS,4:SBUS_NI,5:DSM,6:SUMD,7:SRXL,8:SRXL2,9:CRSF,10:ST24,11:FPORT,12:FPORT2,13:FastSBUS
AP_GROUPINFO("_PROTOCOLS", 1, Parameters_RCIN, rcin_protocols, 1),
// RC_PROTOCOLS copied from RC_Channel/RC_Channels_Varinfo.h
// @Param: RC_MSGRATE
// @DisplayName: DroneCAN RC Message rate
// @Description: Rate at which RC input is sent via DroneCAN
// @User: Advanced
// @Increment: 1
// @Range: 0 255
// @Units: Hz
AP_GROUPINFO("_MSGRATE", 2, Parameters_RCIN, rcin_rate_hz, 50),
// @Param: RC1_PORT
// @DisplayName: RC input port
// @Description: This is the serial port number where SERIALx_PROTOCOL will be set to RC input.
// @Range: 0 10
// @Increment: 1
// @User: Advanced
// @RebootRequired: True
AP_GROUPINFO("_PORT", 3, Parameters_RCIN, rcin1_port, AP_PERIPH_RC1_PORT_DEFAULT),
// @Param: RC1_PORT_OPTIONS
// @DisplayName: RC input port serial options
// @Description: This is the serial port number where SERIALx_PROTOCOL will be set to RC input.
// @Description: Control over UART options. The InvertRX option controls invert of the receive pin. The InvertTX option controls invert of the transmit pin. The HalfDuplex option controls half-duplex (onewire) mode, where both transmit and receive is done on the transmit wire. The Swap option allows the RX and TX pins to be swapped on STM32F7 based boards.
// @Bitmask: 0:InvertRX, 1:InvertTX, 2:HalfDuplex, 3:SwapTXRX, 4: RX_PullDown, 5: RX_PullUp, 6: TX_PullDown, 7: TX_PullUp, 8: RX_NoDMA, 9: TX_NoDMA, 10: Don't forward mavlink to/from, 11: DisableFIFO, 12: Ignore Streamrate
AP_GROUPINFO("1_PORT_OPTIONS", 4, Parameters_RCIN, rcin1_port_options, AP_PERIPH_RC1_PORT_OPTIONS_DEFAULT),
// @RebootRequired: True
AP_GROUPEND
};
Parameters_RCIN::Parameters_RCIN(void)
{
AP_Param::setup_object_defaults(this, var_info);
}
void AP_Periph_FW::rcin_init()
{
if (g_rcin.rcin1_port == 0) {
return;
}
// init uart for serial RC
auto *uart = hal.serial(g_rcin.rcin1_port);
if (uart == nullptr) {
return;
}
uart->set_options(g_rcin.rcin1_port_options);
serial_manager.set_protocol_and_baud(
g_rcin.rcin1_port,
AP_SerialManager::SerialProtocol_RCIN,
115200 // baud doesn't matter; RC Protocol autobauds
);
auto &rc = AP::RC();
rc.init();
rc.set_rc_protocols(g_rcin.rcin_protocols);
rc.add_uart(uart);
rcin_initialised = true;
}
void AP_Periph_FW::rcin_update()
{
if (!rcin_initialised) {
return;
}
auto &rc = AP::RC();
if (!rc.new_input()) {
return;
}
// log discovered protocols:
auto new_rc_protocol = rc.protocol_name();
if (new_rc_protocol != rcin_rc_protocol) {
can_printf("Decoding (%s)", new_rc_protocol);
rcin_rc_protocol = new_rc_protocol;
}
// decimate the input to a parameterized rate
const uint8_t rate_hz = g_rcin.rcin_rate_hz;
if (rate_hz == 0) {
return;
}
const auto now_ms = AP_HAL::millis();
const auto interval_ms = 1000U / rate_hz;
if (now_ms - rcin_last_sent_RCInput_ms < interval_ms) {
return;
}
rcin_last_sent_RCInput_ms = now_ms;
// extract data and send CAN packet:
const uint8_t num_channels = rc.num_channels();
uint16_t channels[MAX_RCIN_CHANNELS];
rc.read(channels, num_channels);
const int16_t rssi = rc.get_RSSI();
can_send_RCInput((uint8_t)rssi, channels, num_channels, rc.failsafe_active(), rssi > 0 && rssi <256);
}
/*
send an RCInput CAN message
*/
void AP_Periph_FW::can_send_RCInput(uint8_t quality, uint16_t *values, uint8_t nvalues, bool in_failsafe, bool quality_valid)
{
uint16_t status = 0;
if (quality_valid) {
status |= DRONECAN_SENSORS_RC_RCINPUT_STATUS_QUALITY_VALID;
}
if (in_failsafe) {
status |= DRONECAN_SENSORS_RC_RCINPUT_STATUS_FAILSAFE;
}
// assemble packet
dronecan_sensors_rc_RCInput pkt {};
pkt.quality = quality;
pkt.status = status;
pkt.rcin.len = nvalues;
for (uint8_t i=0; i<nvalues; i++) {
pkt.rcin.data[i] = values[i];
}
// encode and send message:
uint8_t buffer[DRONECAN_SENSORS_RC_RCINPUT_MAX_SIZE] {};
uint16_t total_size = dronecan_sensors_rc_RCInput_encode(&pkt, buffer, !periph.canfdout());
canard_broadcast(DRONECAN_SENSORS_RC_RCINPUT_SIGNATURE,
DRONECAN_SENSORS_RC_RCINPUT_ID,
CANARD_TRANSFER_PRIORITY_HIGH,
buffer,
total_size);
}
#endif // HAL_PERIPH_ENABLE_RCIN