ardupilot/libraries/Desktop/support/sitl.cpp

349 lines
7.4 KiB
C++
Raw Normal View History

/*
SITL handling
This simulates the APM1 hardware sufficiently for the APM code to
think it is running on real hardware
Andrew Tridgell November 2011
*/
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/udp.h>
#include <arpa/inet.h>
#include <time.h>
#include <sys/time.h>
#include <signal.h>
#include <math.h>
#include <APM_RC.h>
#include <wiring.h>
#include <AP_PeriodicProcess.h>
#include <AP_TimerProcess.h>
#include <SITL.h>
#include <avr/interrupt.h>
#include "sitl_adc.h"
#include "sitl_rc.h"
#include "desktop.h"
#include "util.h"
#define SIMIN_PORT 5501
#define RCOUT_PORT 5502
static int sitl_fd;
struct sockaddr_in rcout_addr;
#ifndef __CYGWIN__
static pid_t parent_pid;
#endif
struct ADC_UDR2 UDR2;
struct RC_ICR4 ICR4;
extern AP_TimerProcess timer_scheduler;
extern Arduino_Mega_ISR_Registry isr_registry;
extern SITL sitl;
static uint32_t update_count;
/*
setup a SITL FDM listening UDP port
*/
static void setup_fdm(void)
{
int one=1, ret;
struct sockaddr_in sockaddr;
memset(&sockaddr,0,sizeof(sockaddr));
#ifdef HAVE_SOCK_SIN_LEN
sockaddr.sin_len = sizeof(sockaddr);
#endif
sockaddr.sin_port = htons(SIMIN_PORT);
sockaddr.sin_family = AF_INET;
sitl_fd = socket(AF_INET, SOCK_DGRAM, 0);
if (sitl_fd == -1) {
fprintf(stderr, "SITL: socket failed - %s\n", strerror(errno));
exit(1);
}
/* we want to be able to re-use ports quickly */
setsockopt(sitl_fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one));
ret = bind(sitl_fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
if (ret == -1) {
fprintf(stderr, "SITL: bind failed on port %u - %s\n",
(unsigned)ntohs(sockaddr.sin_port), strerror(errno));
exit(1);
}
set_nonblocking(sitl_fd);
}
/*
check for a SITL FDM packet
*/
static void sitl_fdm_input(void)
{
ssize_t size;
struct pwm_packet {
uint16_t pwm[8];
};
union {
struct sitl_fdm fg_pkt;
struct pwm_packet pwm_pkt;
} d;
size = recv(sitl_fd, &d, sizeof(d), MSG_DONTWAIT);
switch (size) {
case 132:
static uint32_t last_report;
static uint32_t count;
if (d.fg_pkt.magic != 0x4c56414e) {
printf("Bad FDM packet - magic=0x%08x\n", d.fg_pkt.magic);
return;
}
if (d.fg_pkt.latitude == 0 ||
d.fg_pkt.longitude == 0 ||
d.fg_pkt.altitude <= 0) {
// garbage input
return;
}
sitl.state = d.fg_pkt;
update_count++;
count++;
if (millis() - last_report > 1000) {
2012-01-10 00:23:37 -04:00
//printf("SIM %u FPS\n", count);
count = 0;
last_report = millis();
}
break;
case 16: {
// a packet giving the receiver PWM inputs
uint8_t i;
for (i=0; i<8; i++) {
// setup the ICR4 register for the RC channel
// inputs
if (d.pwm_pkt.pwm[i] != 0) {
ICR4.set(i, d.pwm_pkt.pwm[i]);
}
}
break;
}
}
}
// used for noise generation in the ADC code
// motor speed in revolutions per second
float sitl_motor_speed[4] = {0,0,0,0};
/*
send RC outputs to simulator
*/
static void sitl_simulator_output(void)
{
static uint32_t last_update;
struct {
uint16_t pwm[11];
uint16_t speed, direction, turbulance;
} control;
/* this maps the registers used for PWM outputs. The RC
* driver updates these whenever it wants the channel output
* to change */
uint16_t *reg[11] = { &OCR5B, &OCR5C, &OCR1B, &OCR1C,
&OCR4C, &OCR4B, &OCR3C, &OCR3B,
&OCR5A, &OCR1A, &OCR3A };
uint8_t i;
if (last_update == 0) {
for (i=0; i<11; i++) {
(*reg[i]) = 1000*2;
}
if (!desktop_state.quadcopter) {
(*reg[0]) = (*reg[1]) = (*reg[3]) = 1500*2;
(*reg[7]) = 1800*2;
}
}
// output at chosen framerate
if (millis() - last_update < 1000/desktop_state.framerate) {
return;
}
last_update = millis();
for (i=0; i<11; i++) {
2012-03-07 02:20:29 -04:00
if (*reg[i] == 0xFFFF) {
control.pwm[i] = 0;
2012-03-07 02:20:29 -04:00
} else {
control.pwm[i] = (*reg[i])/2;
2012-03-07 02:20:29 -04:00
}
}
if (!desktop_state.quadcopter) {
// add in engine multiplier
if (control.pwm[2] > 1000) {
control.pwm[2] = ((control.pwm[2]-1000) * sitl.engine_mul) + 1000;
if (control.pwm[2] > 2000) control.pwm[2] = 2000;
}
// 400kV motor, 16V
sitl_motor_speed[0] = ((control.pwm[2]-1000)/1000.0) * 400 * 16 / 60.0;
} else {
// 850kV motor, 16V
for (i=0; i<4; i++) {
sitl_motor_speed[i] = ((control.pwm[i]-1000)/1000.0) * 850 * 12 / 60.0;
}
}
// setup wind control
control.speed = sitl.wind_speed * 100;
float direction = sitl.wind_direction;
if (direction < 0) {
direction += 360;
}
control.direction = direction * 100;
control.turbulance = sitl.wind_turbulance * 100;
// zero the wind for the first 15s to allow pitot calibration
if (millis() < 15000) {
control.speed = 0;
}
sendto(sitl_fd, (void*)&control, sizeof(control), MSG_DONTWAIT, (const sockaddr *)&rcout_addr, sizeof(rcout_addr));
}
/*
timer called at 1kHz
*/
static void timer_handler(int signum)
{
static uint32_t last_update_count;
2012-11-18 17:26:53 -04:00
if (_interrupts_are_blocked()) {
return;
}
uint8_t oldSREG = SREG;
2012-03-05 06:00:22 -04:00
cli();
#ifndef __CYGWIN__
/* make sure we die if our parent dies */
if (kill(parent_pid, 0) != 0) {
exit(1);
}
2012-03-14 21:16:50 -03:00
#else
static uint16_t count = 0;
static uint32_t last_report;
count++;
if (millis() - last_report > 1000) {
printf("TH %u cps\n", count);
count = 0;
last_report = millis();
}
#endif
/* check for packet from flight sim */
sitl_fdm_input();
// trigger RC input
if (isr_registry._registry[ISR_REGISTRY_TIMER4_CAPT]) {
isr_registry._registry[ISR_REGISTRY_TIMER4_CAPT]();
}
// send RC output to flight sim
sitl_simulator_output();
if (update_count == 0) {
sitl_update_gps(0, 0, 0, 0, 0, false);
SREG = oldSREG;
return;
}
if (update_count == last_update_count) {
SREG = oldSREG;
return;
}
last_update_count = update_count;
sitl_update_gps(sitl.state.latitude, sitl.state.longitude,
sitl.state.altitude,
sitl.state.speedN, sitl.state.speedE, !sitl.gps_disable);
sitl_update_adc(sitl.state.rollDeg, sitl.state.pitchDeg, sitl.state.yawDeg,
sitl.state.rollRate, sitl.state.pitchRate, sitl.state.yawRate,
sitl.state.xAccel, sitl.state.yAccel, sitl.state.zAccel,
sitl.state.airspeed);
sitl_update_barometer(sitl.state.altitude);
sitl_update_compass(sitl.state.rollDeg, sitl.state.pitchDeg, sitl.state.heading);
// clear the ADC conversion flag,
// so the ADC code doesn't get stuck
ADCSRA &= ~_BV(ADSC);
// trigger all APM timers. We do this last as it can re-enable
// interrupts, which can lead to recursion
timer_scheduler.run();
SREG = oldSREG;
}
/*
setup a timer used to prod the ISRs
*/
static void setup_timer(void)
{
struct itimerval it;
struct sigaction act;
act.sa_handler = timer_handler;
act.sa_flags = SA_RESTART|SA_NODEFER;
sigemptyset(&act.sa_mask);
sigaddset(&act.sa_mask, SIGALRM);
sigaction(SIGALRM, &act, NULL);
it.it_interval.tv_sec = 0;
it.it_interval.tv_usec = 1000; // 1KHz
it.it_value = it.it_interval;
setitimer(ITIMER_REAL, &it, NULL);
}
/*
setup for SITL handling
*/
void sitl_setup(void)
{
#ifndef __CYGWIN__
parent_pid = getppid();
#endif
rcout_addr.sin_family = AF_INET;
rcout_addr.sin_port = htons(RCOUT_PORT);
inet_pton(AF_INET, "127.0.0.1", &rcout_addr.sin_addr);
setup_timer();
setup_fdm();
sitl_setup_adc();
printf("Starting SITL input\n");
// setup some initial values
sitl_update_barometer(desktop_state.initial_height);
sitl_update_adc(0, 0, 0, 0, 0, 0, 0, 0, -9.8, 0);
sitl_update_compass(0, 0, 0);
sitl_update_gps(0, 0, 0, 0, 0, false);
}