ardupilot/archive/ArducopterNG/DCM.pde

239 lines
7.9 KiB
Plaintext
Raw Normal View History

/*
www.ArduCopter.com - www.DIYDrones.com
Copyright (c) 2010. All rights reserved.
An Open Source Arduino based multicopter.
File : DCM.pde
Version : v1.0, Aug 27, 2010
Author(s): ArduCopter Team
Ted Carancho (aeroquad), Jose Julio, Jordi Muñoz,
Jani Hirvinen, Ken McEwans, Roberto Navoni,
Sandro Benigno, Chris Anderson
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
* ************************************************************** *
ChangeLog:
* ************************************************************** *
TODO:
* ************************************************************** */
/* ******************************************* */
/* ******* DCM IMU functions ********************* */
/**************************************************/
void Normalize(void)
{
float error=0;
float temporary[3][3];
float renorm=0;
error= -Vector_Dot_Product(&DCM_Matrix[0][0],&DCM_Matrix[1][0])*.5; //eq.19
Vector_Scale(&temporary[0][0], &DCM_Matrix[1][0], error); //eq.19
Vector_Scale(&temporary[1][0], &DCM_Matrix[0][0], error); //eq.19
Vector_Add(&temporary[0][0], &temporary[0][0], &DCM_Matrix[0][0]);//eq.19
Vector_Add(&temporary[1][0], &temporary[1][0], &DCM_Matrix[1][0]);//eq.19
Vector_Cross_Product(&temporary[2][0],&temporary[0][0],&temporary[1][0]); // c= a x b //eq.20
renorm= .5 *(3 - Vector_Dot_Product(&temporary[0][0],&temporary[0][0])); //eq.21
Vector_Scale(&DCM_Matrix[0][0], &temporary[0][0], renorm);
renorm= .5 *(3 - Vector_Dot_Product(&temporary[1][0],&temporary[1][0])); //eq.21
Vector_Scale(&DCM_Matrix[1][0], &temporary[1][0], renorm);
renorm= .5 *(3 - Vector_Dot_Product(&temporary[2][0],&temporary[2][0])); //eq.21
Vector_Scale(&DCM_Matrix[2][0], &temporary[2][0], renorm);
}
/**************************************************/
void Drift_correction(void)
{
//Compensation the Roll, Pitch and Yaw drift.
float errorCourse;
static float Scaled_Omega_P[3];
static float Scaled_Omega_I[3];
//*****Roll and Pitch***************
Vector_Cross_Product(&errorRollPitch[0],&Accel_Vector[0],&DCM_Matrix[2][0]); //adjust the ground of reference
// errorRollPitch are in Accel ADC units
// Limit max errorRollPitch to limit max Omega_P and Omega_I
errorRollPitch[0] = constrain(errorRollPitch[0],-50,50);
errorRollPitch[1] = constrain(errorRollPitch[1],-50,50);
errorRollPitch[2] = constrain(errorRollPitch[2],-50,50);
Vector_Scale(&Omega_P[0],&errorRollPitch[0],Kp_ROLLPITCH);
Vector_Scale(&Scaled_Omega_I[0],&errorRollPitch[0],Ki_ROLLPITCH);
Vector_Add(Omega_I,Omega_I,Scaled_Omega_I);
//*****YAW***************
// We make the gyro YAW drift correction based on compass magnetic heading
if (MAGNETOMETER == 1) {
errorCourse= (DCM_Matrix[0][0]*AP_Compass.heading_y) - (DCM_Matrix[1][0]*AP_Compass.heading_x); //Calculating YAW error
Vector_Scale(errorYaw,&DCM_Matrix[2][0],errorCourse); //Applys the yaw correction to the XYZ rotation of the aircraft, depeding the position.
Vector_Scale(&Scaled_Omega_P[0],&errorYaw[0],Kp_YAW);
Vector_Add(Omega_P,Omega_P,Scaled_Omega_P);//Adding Proportional.
// Limit max errorYaw to limit max Omega_I
errorYaw[0] = constrain(errorYaw[0],-50,50);
errorYaw[1] = constrain(errorYaw[1],-50,50);
errorYaw[2] = constrain(errorYaw[2],-50,50);
Vector_Scale(&Scaled_Omega_I[0],&errorYaw[0],Ki_YAW);
Vector_Add(Omega_I,Omega_I,Scaled_Omega_I);//adding integrator to the Omega_I
}
}
/**************************************************/
void Accel_adjust(void)
{
//Accel_Vector[1] += Accel_Scale(speed_3d*Omega[2]); // Centrifugal force on Acc_y = GPS_speed*GyroZ
//Accel_Vector[2] -= Accel_Scale(speed_3d*Omega[1]); // Centrifugal force on Acc_z = GPS_speed*GyroY
}
/**************************************************/
void Matrix_update(void)
{
Gyro_Vector[0]=Gyro_Scaled_X(read_adc(0)); //gyro x roll
Gyro_Vector[1]=Gyro_Scaled_Y(read_adc(1)); //gyro y pitch
Gyro_Vector[2]=Gyro_Scaled_Z(read_adc(2)); //gyro Z yaw
// Low pass filter on accelerometer data (to filter vibrations)
Accel_Vector[0]=Accel_Vector[0]*0.6 + (float)read_adc(3)*0.4; // acc x
Accel_Vector[1]=Accel_Vector[1]*0.6 + (float)read_adc(4)*0.4; // acc y
Accel_Vector[2]=Accel_Vector[2]*0.6 + (float)read_adc(5)*0.4; // acc z
Vector_Add(&Omega[0], &Gyro_Vector[0], &Omega_I[0]);//adding integrator
Vector_Add(&Omega_Vector[0], &Omega[0], &Omega_P[0]);//adding proportional
//Accel_adjust();//adjusting centrifugal acceleration. // Not used for quadcopter
#if OUTPUTMODE==1 // corrected mode
Update_Matrix[0][0]=0;
Update_Matrix[0][1]=-G_Dt*Omega_Vector[2];//-z
Update_Matrix[0][2]=G_Dt*Omega_Vector[1];//y
Update_Matrix[1][0]=G_Dt*Omega_Vector[2];//z
Update_Matrix[1][1]=0;
Update_Matrix[1][2]=-G_Dt*Omega_Vector[0];//-x
Update_Matrix[2][0]=-G_Dt*Omega_Vector[1];//-y
Update_Matrix[2][1]=G_Dt*Omega_Vector[0];//x
Update_Matrix[2][2]=0;
#endif
#if OUTPUTMODE==0 // uncorrected data of the gyros (with drift)
Update_Matrix[0][0]=0;
Update_Matrix[0][1]=-G_Dt*Gyro_Vector[2];//-z
Update_Matrix[0][2]=G_Dt*Gyro_Vector[1];//y
Update_Matrix[1][0]=G_Dt*Gyro_Vector[2];//z
Update_Matrix[1][1]=0;
Update_Matrix[1][2]=-G_Dt*Gyro_Vector[0];
Update_Matrix[2][0]=-G_Dt*Gyro_Vector[1];
Update_Matrix[2][1]=G_Dt*Gyro_Vector[0];
Update_Matrix[2][2]=0;
#endif
Matrix_Multiply(DCM_Matrix,Update_Matrix,Temporary_Matrix); //a*b=c
for(int x=0; x<3; x++) //Matrix Addition (update)
{
for(int y=0; y<3; y++)
{
DCM_Matrix[x][y]+=Temporary_Matrix[x][y];
}
}
}
void Euler_angles(void)
{
#if (OUTPUTMODE==2) // Only accelerometer info (debugging purposes)
roll = atan2(Accel_Vector[1],Accel_Vector[2]); // atan2(acc_y,acc_z)
pitch = -asin((Accel_Vector[0])/(float)GRAVITY); // asin(acc_x)
yaw = 0;
#else // Euler angles from DCM matrix
pitch = asin(-DCM_Matrix[2][0]);
roll = atan2(DCM_Matrix[2][1],DCM_Matrix[2][2]);
yaw = atan2(DCM_Matrix[1][0],DCM_Matrix[0][0]);
#endif
}
// VECTOR FUNCTIONS
//Computes the dot product of two vectors
float Vector_Dot_Product(float vector1[3],float vector2[3])
{
float op=0;
for(int c=0; c<3; c++)
{
op+=vector1[c]*vector2[c];
}
return op;
}
//Computes the cross product of two vectors
void Vector_Cross_Product(float vectorOut[3], float v1[3],float v2[3])
{
vectorOut[0]= (v1[1]*v2[2]) - (v1[2]*v2[1]);
vectorOut[1]= (v1[2]*v2[0]) - (v1[0]*v2[2]);
vectorOut[2]= (v1[0]*v2[1]) - (v1[1]*v2[0]);
}
//Multiply the vector by a scalar.
void Vector_Scale(float vectorOut[3],float vectorIn[3], float scale2)
{
for(int c=0; c<3; c++)
{
vectorOut[c]=vectorIn[c]*scale2;
}
}
void Vector_Add(float vectorOut[3],float vectorIn1[3], float vectorIn2[3])
{
for(int c=0; c<3; c++)
{
vectorOut[c]=vectorIn1[c]+vectorIn2[c];
}
}
/********* MATRIX FUNCTIONS *****************************************/
//Multiply two 3x3 matrixs. This function developed by Jordi can be easily adapted to multiple n*n matrix's. (Pero me da flojera!).
void Matrix_Multiply(float a[3][3], float b[3][3],float mat[3][3])
{
float op[3];
for(int x=0; x<3; x++)
{
for(int y=0; y<3; y++)
{
for(int w=0; w<3; w++)
{
op[w]=a[x][w]*b[w][y];
}
mat[x][y]=0;
mat[x][y]=op[0]+op[1]+op[2];
float test=mat[x][y];
}
}
}