ardupilot/ArduCopterMega/motors.pde

265 lines
7.1 KiB
Plaintext
Raw Normal View History

#define ARM_DELAY 10
#define DISARM_DELAY 10
void arm_motors()
{
static byte arming_counter;
// Arm motor output : Throttle down and full yaw right for more than 2 seconds
if (rc_3.control_in == 0){
if (rc_4.control_in > 2700) {
if (arming_counter > ARM_DELAY) {
motor_armed = true;
} else{
arming_counter++;
}
}else if (rc_4.control_in < -2700) {
if (arming_counter > DISARM_DELAY){
motor_armed = false;
}else{
arming_counter++;
}
}else{
arming_counter = 0;
}
}
}
/*****************************************
* Set the flight control servos based on the current calculated values
*****************************************/
void
set_servos_4()
{
static byte num;
static byte counteri;
// Quadcopter mix
if (motor_armed == true && motor_auto_safe == true) {
int out_min = rc_3.radio_min;
// Throttle is 0 to 1000 only
rc_3.servo_out = constrain(rc_3.servo_out, 0, 1000);
if(rc_3.servo_out > 0)
out_min = rc_3.radio_min + 50;
//Serial.printf("out: %d %d %d %d\t\t", rc_1.servo_out, rc_2.servo_out, rc_3.servo_out, rc_4.servo_out);
// creates the radio_out and pwm_out values
rc_1.calc_pwm();
rc_2.calc_pwm();
rc_3.calc_pwm();
rc_4.calc_pwm();
//Serial.printf("out: %d %d %d %d\n", rc_1.radio_out, rc_2.radio_out, rc_3.radio_out, rc_4.radio_out);
//Serial.printf("yaw: %d ", rc_4.radio_out);
if(frame_type == PLUS_FRAME){
motor_out[CH_1] = rc_3.radio_out - rc_1.pwm_out;
motor_out[CH_2] = rc_3.radio_out + rc_1.pwm_out;
motor_out[CH_3] = rc_3.radio_out + rc_2.pwm_out;
motor_out[CH_4] = rc_3.radio_out - rc_2.pwm_out;
motor_out[CH_1] += rc_4.pwm_out; // CCW
motor_out[CH_2] += rc_4.pwm_out; // CCW
motor_out[CH_3] -= rc_4.pwm_out; // CW
motor_out[CH_4] -= rc_4.pwm_out; // CW
}else if(frame_type == X_FRAME){
int roll_out = rc_1.pwm_out / 2;
int pitch_out = rc_2.pwm_out / 2;
motor_out[CH_3] = rc_3.radio_out + roll_out + pitch_out;
motor_out[CH_2] = rc_3.radio_out + roll_out - pitch_out;
motor_out[CH_1] = rc_3.radio_out - roll_out + pitch_out;
motor_out[CH_4] = rc_3.radio_out - roll_out - pitch_out;
//Serial.printf("\tb4: %d %d %d %d ", motor_out[CH_1], motor_out[CH_2], motor_out[CH_3], motor_out[CH_4]);
motor_out[CH_1] += rc_4.pwm_out; // CCW
motor_out[CH_2] += rc_4.pwm_out; // CCW
motor_out[CH_3] -= rc_4.pwm_out; // CW
motor_out[CH_4] -= rc_4.pwm_out; // CW
//Serial.printf("\tl8r: %d %d %d %d\n", motor_out[CH_1], motor_out[CH_2], motor_out[CH_3], motor_out[CH_4]);
}else if(frame_type == TRI_FRAME){
// Tri-copter power distribution
int roll_out = (float)rc_1.pwm_out * .866;
int pitch_out = rc_2.pwm_out / 2;
// front two motors
motor_out[CH_2] = rc_3.radio_out + roll_out + pitch_out;
motor_out[CH_1] = rc_3.radio_out - roll_out + pitch_out;
// rear motors
motor_out[CH_4] = rc_3.radio_out - rc_2.pwm_out;
// servo Yaw
APM_RC.OutputCh(CH_7, rc_4.radio_out);
}else if (frame_type == HEXA_FRAME) {
int roll_out = (float)rc_1.pwm_out * .866;
int pitch_out = rc_2.pwm_out / 2;
//left side
motor_out[CH_2] = rc_3.radio_out + rc_1.pwm_out; // CCW
motor_out[CH_3] = rc_3.radio_out + roll_out + pitch_out; // CW
motor_out[CH_8] = rc_3.radio_out + roll_out - pitch_out; // CW
//right side
motor_out[CH_1] = rc_3.radio_out - rc_1.pwm_out; // CW
motor_out[CH_7] = rc_3.radio_out - roll_out + pitch_out; // CCW
motor_out[CH_4] = rc_3.radio_out - roll_out - pitch_out; // CCW
motor_out[CH_7] += rc_4.pwm_out; // CCW
motor_out[CH_2] += rc_4.pwm_out; // CCW
motor_out[CH_4] += rc_4.pwm_out; // CCW
motor_out[CH_3] -= rc_4.pwm_out; // CW
motor_out[CH_1] -= rc_4.pwm_out; // CW
motor_out[CH_8] -= rc_4.pwm_out; // CW
} else {
Serial.print("frame error");
}
// limit output so motors don't stop
motor_out[CH_1] = constrain(motor_out[CH_1], out_min, rc_3.radio_max);
motor_out[CH_2] = constrain(motor_out[CH_2], out_min, rc_3.radio_max);
motor_out[CH_3] = constrain(motor_out[CH_3], out_min, rc_3.radio_max);
motor_out[CH_4] = constrain(motor_out[CH_4], out_min, rc_3.radio_max);
if (frame_type == HEXA_FRAME) {
motor_out[CH_7] = constrain(motor_out[CH_7], out_min, rc_3.radio_max);
motor_out[CH_8] = constrain(motor_out[CH_8], out_min, rc_3.radio_max);
}
num++;
if (num > 10){
num = 0;
//Serial.print("!");
//debugging with Channel 6
//pid_baro_throttle.kD((float)rc_6.control_in / 1000); // 0 to 1
//pid_baro_throttle.kP((float)rc_6.control_in / 4000); // 0 to .25
/*
// ROLL and PITCH
// make sure you init_pids() after changing the kP
pid_stabilize_roll.kP((float)rc_6.control_in / 1000);
init_pids();
//Serial.print("kP: ");
//Serial.println(pid_stabilize_roll.kP(),3);
//*/
/*
// YAW
// make sure you init_pids() after changing the kP
pid_yaw.kP((float)rc_6.control_in / 1000);
init_pids();
//*/
/*
write_int(motor_out[CH_1]);
write_int(motor_out[CH_2]);
write_int(motor_out[CH_3]);
write_int(motor_out[CH_4]);
write_int((int)(dcm.roll_sensor / 100));
write_int((int)(dcm.pitch_sensor / 100));
write_int((int)(dcm.yaw_sensor / 100));
write_int((int)(nav_yaw / 100));
write_int((int)nav_lat);
write_int((int)nav_lon);
write_int((int)nav_roll);
write_int((int)nav_pitch);
write_int((int)current_loc.alt);
write_int((int)altitude_error);
flush(10);
//*/
}
// Send commands to motors
if(rc_3.servo_out > 0){
APM_RC.OutputCh(CH_1, motor_out[CH_1]);
APM_RC.OutputCh(CH_2, motor_out[CH_2]);
APM_RC.OutputCh(CH_3, motor_out[CH_3]);
APM_RC.OutputCh(CH_4, motor_out[CH_4]);
// InstantPWM
APM_RC.Force_Out0_Out1();
APM_RC.Force_Out2_Out3();
if (frame_type == HEXA_FRAME) {
APM_RC.OutputCh(CH_7, motor_out[CH_7]);
APM_RC.OutputCh(CH_8, motor_out[CH_8]);
APM_RC.Force_Out6_Out7();
}
}else{
APM_RC.OutputCh(CH_1, rc_3.radio_min);
APM_RC.OutputCh(CH_2, rc_3.radio_min);
APM_RC.OutputCh(CH_3, rc_3.radio_min);
APM_RC.OutputCh(CH_4, rc_3.radio_min);
// InstantPWM
APM_RC.Force_Out0_Out1();
APM_RC.Force_Out2_Out3();
if (frame_type == HEXA_FRAME) {
APM_RC.OutputCh(CH_7, rc_3.radio_min);
APM_RC.OutputCh(CH_8, rc_3.radio_min);
APM_RC.Force_Out6_Out7();
}
}
}else{
// our motor is unarmed, we're on the ground
reset_I();
if(rc_3.control_in > 0){
// we have pushed up the throttle
// remove safety
motor_auto_safe = true;
}
// Send commands to motors
APM_RC.OutputCh(CH_1, rc_3.radio_min);
APM_RC.OutputCh(CH_2, rc_3.radio_min);
APM_RC.OutputCh(CH_3, rc_3.radio_min);
APM_RC.OutputCh(CH_4, rc_3.radio_min);
if (frame_type == HEXA_FRAME) {
APM_RC.OutputCh(CH_7, rc_3.radio_min);
APM_RC.OutputCh(CH_8, rc_3.radio_min);
}
// reset I terms of PID controls
reset_I();
// Initialize yaw command to actual yaw when throttle is down...
rc_4.control_in = ToDeg(yaw);
}
}