2020-03-10 03:45:40 -03:00
/*
Definition of functions used to provide a backup estimate of yaw angle
that doesn ' t use a magnetometer . Uses a bank of 3 - state EKF ' s organised
as a Guassian sum filter where states are velocity N , E ( m / s ) and yaw angle ( rad )
Written by Paul Riseborough < p_riseborough @ live . com . au >
This program is free software : you can redistribute it and / or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation , either version 3 of the License , or
( at your option ) any later version .
This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY ; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
GNU General Public License for more details .
You should have received a copy of the GNU General Public License
along with this program . If not , see < http : //www.gnu.org/licenses/>.
*/
# include <AP_HAL/AP_HAL.h>
# include "AP_NavEKF/EKFGSF_yaw.h"
# include <AP_AHRS/AP_AHRS.h>
# include <AP_Vehicle/AP_Vehicle.h>
# include <GCS_MAVLink/GCS.h>
EKFGSF_yaw : : EKFGSF_yaw ( ) { } ;
void EKFGSF_yaw : : update ( const Vector3f & delAng ,
const Vector3f & delVel ,
const float delAngDT ,
const float delVelDT ,
bool runEKF ,
float TAS )
{
// copy to class variables
delta_angle = delAng ;
delta_velocity = delVel ;
angle_dt = delAngDT ;
velocity_dt = delVelDT ;
run_ekf_gsf = runEKF ;
true_airspeed = TAS ;
// Calculate a low pass filtered acceleration vector that will be used to keep the AHRS tilt aligned
// The time constant of the filter is a fixed ratio relative to the time constant of the AHRS tilt correction loop
const float filter_coef = fminf ( EKFGSF_accelFiltRatio * delVelDT * EKFGSF_tiltGain , 1.0f ) ;
const Vector3f accel = delVel / fmaxf ( delVelDT , 0.001f ) ;
ahrs_accel = ahrs_accel * ( 1.0f - filter_coef ) + accel * filter_coef ;
// Iniitialise states and only when acceleration is close to 1g to prevent vehicle movement casuing a large initial tilt error
if ( ! ahrs_tilt_aligned ) {
const float accel_norm_sq = accel . length_squared ( ) ;
const float upper_accel_limit = GRAVITY_MSS * 1.1f ;
const float lower_accel_limit = GRAVITY_MSS * 0.9f ;
const bool ok_to_align = ( ( accel_norm_sq > lower_accel_limit * lower_accel_limit & &
accel_norm_sq < upper_accel_limit * upper_accel_limit ) ) ;
if ( ok_to_align ) {
alignTilt ( ) ;
ahrs_tilt_aligned = true ;
ahrs_accel = accel ;
}
return ;
}
// Calculate common variables used by the AHRS prediction models
ahrs_accel_norm = ahrs_accel . length ( ) ;
// Calculate AHRS acceleration fusion gain using a quadratic weighting function that is unity at 1g
// and zero at the min and max g limits. This reduces the effect of large g transients on the attitude
// esitmates.
float EKFGSF_ahrs_ng = ahrs_accel_norm / GRAVITY_MSS ;
if ( EKFGSF_ahrs_ng > 1.0f ) {
if ( is_positive ( true_airspeed ) ) {
// When flying in fixed wing mode we need to allow for more positive g due to coordinated turns
// Gain varies from unity at 1g to zero at 2g
accel_gain = EKFGSF_tiltGain * sq ( 2.0f - EKFGSF_ahrs_ng ) ;
} else if ( accel_gain < = 1.5f ) {
// Gain varies from unity at 1g to zero at 1.5g
accel_gain = EKFGSF_tiltGain * sq ( 3.0f - 2.0f * EKFGSF_ahrs_ng ) ;
} else {
// Gain is zero above max g
accel_gain = 0.0f ;
}
} else if ( accel_gain > 0.5f ) {
// Gain varies from zero at 0.5g to unity at 1g
accel_gain = EKFGSF_tiltGain * sq ( 2.0f * EKFGSF_ahrs_ng - 1.0f ) ;
} else {
// Gain is zero below min g
accel_gain = 0.0f ;
}
// Always run the AHRS prediction cycle for each model
for ( uint8_t mdl_idx = 0 ; mdl_idx < N_MODELS_EKFGSF ; mdl_idx + + ) {
predict ( mdl_idx ) ;
}
2020-04-24 18:52:25 -03:00
if ( vel_fuse_running & & ! run_ekf_gsf ) {
2020-03-10 03:45:40 -03:00
vel_fuse_running = false ;
}
// Calculate a composite yaw as a weighted average of the states for each model.
// To avoid issues with angle wrapping, the yaw state is converted to a vector with legnth
// equal to the weighting value before it is summed.
Vector2f yaw_vector = { } ;
for ( uint8_t mdl_idx = 0 ; mdl_idx < N_MODELS_EKFGSF ; mdl_idx + + ) {
yaw_vector [ 0 ] + = GSF . weights [ mdl_idx ] * cosf ( EKF [ mdl_idx ] . X [ 2 ] ) ;
yaw_vector [ 1 ] + = GSF . weights [ mdl_idx ] * sinf ( EKF [ mdl_idx ] . X [ 2 ] ) ;
}
GSF . yaw = atan2f ( yaw_vector [ 1 ] , yaw_vector [ 0 ] ) ;
// Example for future reference showing how a full GSF covariance matrix could be calculated if required
/*
memset ( & GSF . P , 0 , sizeof ( GSF . P ) ) ;
for ( uint8_t mdl_idx = 0 ; mdl_idx < N_MODELS_EKFGSF ; mdl_idx + + ) {
2020-04-23 01:11:03 -03:00
float delta [ 3 ] ;
for ( uint8_t row = 0 ; row < 3 ; row + + ) {
delta [ row ] = EKF [ mdl_idx ] . X [ row ] - GSF . X [ row ] ;
}
for ( uint8_t row = 0 ; row < 3 ; row + + ) {
for ( uint8_t col = 0 ; col < 3 ; col + + ) {
GSF . P [ row ] [ col ] + = GSF . weights [ mdl_idx ] * ( EKF [ mdl_idx ] . P [ row ] [ col ] + delta [ row ] * delta [ col ] ) ;
}
}
}
2020-03-10 03:45:40 -03:00
*/
GSF . yaw_variance = 0.0f ;
for ( uint8_t mdl_idx = 0 ; mdl_idx < N_MODELS_EKFGSF ; mdl_idx + + ) {
float yawDelta = wrap_PI ( EKF [ mdl_idx ] . X [ 2 ] - GSF . yaw ) ;
GSF . yaw_variance + = GSF . weights [ mdl_idx ] * ( EKF [ mdl_idx ] . P [ 2 ] [ 2 ] + sq ( yawDelta ) ) ;
}
}
2020-04-24 21:25:29 -03:00
void EKFGSF_yaw : : fuseVelData ( const Vector2f & vel , const float velAcc )
2020-03-10 03:45:40 -03:00
{
2020-04-24 20:45:28 -03:00
// convert reported accuracy to a variance, but limit lower value to protect algorithm stability
const float velObsVar = sq ( fmaxf ( velAcc , 0.5f ) ) ;
2020-04-24 18:52:25 -03:00
// The 3-state EKF models only run when flying to avoid corrupted estimates due to operator handling and GPS interference
if ( run_ekf_gsf ) {
if ( ! vel_fuse_running ) {
// Perform in-flight alignment
2020-04-24 20:45:28 -03:00
resetEKFGSF ( ) ;
2020-04-24 18:52:25 -03:00
for ( uint8_t mdl_idx = 0 ; mdl_idx < N_MODELS_EKFGSF ; mdl_idx + + ) {
// Use the firstGPS measurement to set the velocities and corresponding variances
2020-04-24 20:45:28 -03:00
EKF [ mdl_idx ] . X [ 0 ] = vel [ 0 ] ;
EKF [ mdl_idx ] . X [ 1 ] = vel [ 1 ] ;
2020-04-24 18:52:25 -03:00
EKF [ mdl_idx ] . P [ 0 ] [ 0 ] = velObsVar ;
EKF [ mdl_idx ] . P [ 1 ] [ 1 ] = velObsVar ;
}
alignYaw ( ) ;
vel_fuse_running = true ;
} else {
float total_w = 0.0f ;
float newWeight [ ( uint8_t ) N_MODELS_EKFGSF ] ;
bool state_update_failed = false ;
for ( uint8_t mdl_idx = 0 ; mdl_idx < N_MODELS_EKFGSF ; mdl_idx + + ) {
// Update states and covariances using GPS NE velocity measurements fused as direct state observations
2020-04-24 20:45:28 -03:00
if ( ! correct ( mdl_idx , vel , velObsVar ) ) {
2020-04-24 18:52:25 -03:00
state_update_failed = true ;
}
}
if ( ! state_update_failed ) {
// Calculate weighting for each model assuming a normal error distribution
for ( uint8_t mdl_idx = 0 ; mdl_idx < N_MODELS_EKFGSF ; mdl_idx + + ) {
newWeight [ mdl_idx ] = fmaxf ( gaussianDensity ( mdl_idx ) * GSF . weights [ mdl_idx ] , 0.0f ) ;
total_w + = newWeight [ mdl_idx ] ;
}
// Normalise the sum of weights to unity
if ( vel_fuse_running & & is_positive ( total_w ) ) {
float total_w_inv = 1.0f / total_w ;
for ( uint8_t mdl_idx = 0 ; mdl_idx < N_MODELS_EKFGSF ; mdl_idx + + ) {
GSF . weights [ mdl_idx ] = newWeight [ mdl_idx ] * total_w_inv ;
}
}
}
}
}
2020-03-10 03:45:40 -03:00
}
void EKFGSF_yaw : : predictAHRS ( const uint8_t mdl_idx )
{
// Generate attitude solution using simple complementary filter for the selected model
// Calculate 'k' unit vector of earth frame rotated into body frame
const Vector3f k ( AHRS [ mdl_idx ] . R [ 2 ] [ 0 ] , AHRS [ mdl_idx ] . R [ 2 ] [ 1 ] , AHRS [ mdl_idx ] . R [ 2 ] [ 2 ] ) ;
// Calculate angular rate vector in rad/sec averaged across last sample interval
Vector3f ang_rate_delayed_raw = delta_angle / angle_dt ;
// Perform angular rate correction using accel data and reduce correction as accel magnitude moves away from 1 g (reduces drift when vehicle picked up and moved).
// During fixed wing flight, compensate for centripetal acceleration assuming coordinated turns and X axis forward
Vector3f tilt_error_gyro_correction = { } ; // (rad/sec)
if ( accel_gain > 0.0f ) {
Vector3f accel = ahrs_accel ;
if ( is_positive ( true_airspeed ) ) {
// Calculate centripetal acceleration in body frame from cross product of body rate and body frame airspeed vector
// NOTE: this assumes X axis is aligned with airspeed vector
Vector3f centripetal_accel_vec_bf = Vector3f ( 0.0f , ang_rate_delayed_raw [ 2 ] * true_airspeed , - ang_rate_delayed_raw [ 1 ] * true_airspeed ) ;
// Correct measured accel for centripetal acceleration
accel - = centripetal_accel_vec_bf ;
}
tilt_error_gyro_correction = ( k % accel ) * ( accel_gain / ahrs_accel_norm ) ;
}
// Gyro bias estimation
const float gyro_bias_limit = radians ( 5.0f ) ;
const float spinRate = ang_rate_delayed_raw . length ( ) ;
if ( spinRate < 0.175f ) {
AHRS [ mdl_idx ] . gyro_bias - = tilt_error_gyro_correction * ( EKFGSF_gyroBiasGain * angle_dt ) ;
2020-04-17 21:04:35 -03:00
for ( uint8_t i = 0 ; i < 3 ; i + + ) {
2020-03-10 03:45:40 -03:00
AHRS [ mdl_idx ] . gyro_bias [ i ] = constrain_float ( AHRS [ mdl_idx ] . gyro_bias [ i ] , - gyro_bias_limit , gyro_bias_limit ) ;
}
}
// Calculate the corrected body frame rotation vector for the last sample interval and apply to the rotation matrix
const Vector3f ahrs_delta_angle = delta_angle + ( tilt_error_gyro_correction - AHRS [ mdl_idx ] . gyro_bias ) * angle_dt ;
AHRS [ mdl_idx ] . R = updateRotMat ( AHRS [ mdl_idx ] . R , ahrs_delta_angle ) ;
}
void EKFGSF_yaw : : alignTilt ( )
{
// Rotation matrix is constructed directly from acceleration measurement and will be the same for
// all models so only need to calculate it once. Assumptions are:
// 1) Yaw angle is zero - yaw is aligned later for each model when velocity fusion commences.
// 2) The vehicle is not accelerating so all of the measured acceleration is due to gravity.
// Calculate earth frame Down axis unit vector rotated into body frame
Vector3f down_in_bf = - delta_velocity ;
down_in_bf . normalize ( ) ;
// Calculate earth frame North axis unit vector rotated into body frame, orthogonal to 'down_in_bf'
// * operator is overloaded to provide a dot product
const Vector3f i_vec_bf ( 1.0f , 0.0f , 0.0f ) ;
Vector3f north_in_bf = i_vec_bf - down_in_bf * ( i_vec_bf * down_in_bf ) ;
north_in_bf . normalize ( ) ;
// Calculate earth frame East axis unit vector rotated into body frame, orthogonal to 'down_in_bf' and 'north_in_bf'
// % operator is overloaded to provide a cross product
const Vector3f east_in_bf = down_in_bf % north_in_bf ;
// Each column in a rotation matrix from earth frame to body frame represents the projection of the
// corresponding earth frame unit vector rotated into the body frame, eg 'north_in_bf' would be the first column.
// We need the rotation matrix from body frame to earth frame so the earth frame unit vectors rotated into body
// frame are copied into corresponding rows instead to create the transpose.
Matrix3f R ;
for ( uint8_t col = 0 ; col < 3 ; col + + ) {
R [ 0 ] [ col ] = north_in_bf [ col ] ;
R [ 1 ] [ col ] = east_in_bf [ col ] ;
R [ 2 ] [ col ] = down_in_bf [ col ] ;
}
// record alignment
for ( uint8_t mdl_idx = 0 ; mdl_idx < N_MODELS_EKFGSF ; mdl_idx + + ) {
AHRS [ mdl_idx ] . R = R ;
AHRS [ mdl_idx ] . aligned = true ;
}
}
void EKFGSF_yaw : : alignYaw ( )
{
// Align yaw angle for each model
for ( uint8_t mdl_idx = 0 ; mdl_idx < N_MODELS_EKFGSF ; mdl_idx + + ) {
if ( fabsf ( AHRS [ mdl_idx ] . R [ 2 ] [ 0 ] ) < fabsf ( AHRS [ mdl_idx ] . R [ 2 ] [ 1 ] ) ) {
// get the roll, pitch, yaw estimates from the rotation matrix using a 321 Tait-Bryan rotation sequence
float roll , pitch , yaw ;
AHRS [ mdl_idx ] . R . to_euler ( & roll , & pitch , & yaw ) ;
// set the yaw angle
yaw = wrap_PI ( EKF [ mdl_idx ] . X [ 2 ] ) ;
// update the body to earth frame rotation matrix
AHRS [ mdl_idx ] . R . from_euler ( roll , pitch , yaw ) ;
} else {
// Calculate the 312 Tait-Bryan rotation sequence that rotates from earth to body frame
Vector3f euler312 = AHRS [ mdl_idx ] . R . to_euler312 ( ) ;
euler312 [ 2 ] = wrap_PI ( EKF [ mdl_idx ] . X [ 2 ] ) ; // first rotation (yaw) taken from EKF model state
// update the body to earth frame rotation matrix
AHRS [ mdl_idx ] . R . from_euler312 ( euler312 [ 0 ] , euler312 [ 1 ] , euler312 [ 2 ] ) ;
}
}
}
// predict states and covariance for specified model index
void EKFGSF_yaw : : predict ( const uint8_t mdl_idx )
{
// generate an attitude reference using IMU data
predictAHRS ( mdl_idx ) ;
// we don't start running the EKF part of the algorithm until there are regular velocity observations
if ( ! vel_fuse_running ) {
return ;
}
// Calculate the yaw state using a projection onto the horizontal that avoids gimbal lock
if ( fabsf ( AHRS [ mdl_idx ] . R [ 2 ] [ 0 ] ) < fabsf ( AHRS [ mdl_idx ] . R [ 2 ] [ 1 ] ) ) {
// use 321 Tait-Bryan rotation to define yaw state
EKF [ mdl_idx ] . X [ 2 ] = atan2f ( AHRS [ mdl_idx ] . R [ 1 ] [ 0 ] , AHRS [ mdl_idx ] . R [ 0 ] [ 0 ] ) ;
} else {
// use 312 Tait-Bryan rotation to define yaw state
EKF [ mdl_idx ] . X [ 2 ] = atan2f ( - AHRS [ mdl_idx ] . R [ 0 ] [ 1 ] , AHRS [ mdl_idx ] . R [ 1 ] [ 1 ] ) ; // first rotation (yaw)
}
// calculate delta velocity in a horizontal front-right frame
const Vector3f del_vel_NED = AHRS [ mdl_idx ] . R * delta_velocity ;
const float dvx = del_vel_NED [ 0 ] * cosf ( EKF [ mdl_idx ] . X [ 2 ] ) + del_vel_NED [ 1 ] * sinf ( EKF [ mdl_idx ] . X [ 2 ] ) ;
const float dvy = - del_vel_NED [ 0 ] * sinf ( EKF [ mdl_idx ] . X [ 2 ] ) + del_vel_NED [ 1 ] * cosf ( EKF [ mdl_idx ] . X [ 2 ] ) ;
// sum delta velocities in earth frame:
EKF [ mdl_idx ] . X [ 0 ] + = del_vel_NED [ 0 ] ;
EKF [ mdl_idx ] . X [ 1 ] + = del_vel_NED [ 1 ] ;
// predict covariance - autocode from https://github.com/priseborough/3_state_filter/blob/flightLogReplay-wip/calcPupdate.txt
// Local short variable name copies required for readability
// Compiler might be smart enough to optimise these out
const float P00 = EKF [ mdl_idx ] . P [ 0 ] [ 0 ] ;
const float P01 = EKF [ mdl_idx ] . P [ 0 ] [ 1 ] ;
const float P02 = EKF [ mdl_idx ] . P [ 0 ] [ 2 ] ;
const float P10 = EKF [ mdl_idx ] . P [ 1 ] [ 0 ] ;
const float P11 = EKF [ mdl_idx ] . P [ 1 ] [ 1 ] ;
const float P12 = EKF [ mdl_idx ] . P [ 1 ] [ 2 ] ;
const float P20 = EKF [ mdl_idx ] . P [ 2 ] [ 0 ] ;
const float P21 = EKF [ mdl_idx ] . P [ 2 ] [ 1 ] ;
const float P22 = EKF [ mdl_idx ] . P [ 2 ] [ 2 ] ;
// Use fixed values for delta velocity and delta angle process noise variances
const float dvxVar = sq ( EKFGSF_accelNoise * velocity_dt ) ; // variance of forward delta velocity - (m/s)^2
const float dvyVar = dvxVar ; // variance of right delta velocity - (m/s)^2
const float dazVar = sq ( EKFGSF_gyroNoise * angle_dt ) ; // variance of yaw delta angle - rad^2
const float t2 = sinf ( EKF [ mdl_idx ] . X [ 2 ] ) ;
const float t3 = cosf ( EKF [ mdl_idx ] . X [ 2 ] ) ;
const float t4 = dvy * t3 ;
const float t5 = dvx * t2 ;
const float t6 = t4 + t5 ;
const float t8 = P22 * t6 ;
const float t7 = P02 - t8 ;
const float t9 = dvx * t3 ;
const float t11 = dvy * t2 ;
const float t10 = t9 - t11 ;
const float t12 = dvxVar * t2 * t3 ;
const float t13 = t2 * t2 ;
const float t14 = t3 * t3 ;
const float t15 = P22 * t10 ;
const float t16 = P12 + t15 ;
const float min_var = 1e-6 f ;
EKF [ mdl_idx ] . P [ 0 ] [ 0 ] = fmaxf ( P00 - P20 * t6 + dvxVar * t14 + dvyVar * t13 - t6 * t7 , min_var ) ;
EKF [ mdl_idx ] . P [ 0 ] [ 1 ] = P01 + t12 - P21 * t6 + t7 * t10 - dvyVar * t2 * t3 ;
EKF [ mdl_idx ] . P [ 0 ] [ 2 ] = t7 ;
EKF [ mdl_idx ] . P [ 1 ] [ 0 ] = P10 + t12 + P20 * t10 - t6 * t16 - dvyVar * t2 * t3 ;
EKF [ mdl_idx ] . P [ 1 ] [ 1 ] = fmaxf ( P11 + P21 * t10 + dvxVar * t13 + dvyVar * t14 + t10 * t16 , min_var ) ;
EKF [ mdl_idx ] . P [ 1 ] [ 2 ] = t16 ;
EKF [ mdl_idx ] . P [ 2 ] [ 0 ] = P20 - t8 ;
EKF [ mdl_idx ] . P [ 2 ] [ 1 ] = P21 + t15 ;
EKF [ mdl_idx ] . P [ 2 ] [ 2 ] = fmaxf ( P22 + dazVar , min_var ) ;
// force symmetry
forceSymmetry ( mdl_idx ) ;
}
// Update EKF states and covariance for specified model index using velocity measurement
// Returns false if the sttae and covariance correction failed
2020-04-24 20:45:28 -03:00
bool EKFGSF_yaw : : correct ( const uint8_t mdl_idx , const Vector2f & vel , const float velObsVar )
2020-03-10 03:45:40 -03:00
{
// calculate velocity observation innovations
2020-04-24 20:45:28 -03:00
EKF [ mdl_idx ] . innov [ 0 ] = EKF [ mdl_idx ] . X [ 0 ] - vel [ 0 ] ;
EKF [ mdl_idx ] . innov [ 1 ] = EKF [ mdl_idx ] . X [ 1 ] - vel [ 1 ] ;
2020-03-10 03:45:40 -03:00
// copy covariance matrix to temporary variables
const float P00 = EKF [ mdl_idx ] . P [ 0 ] [ 0 ] ;
const float P01 = EKF [ mdl_idx ] . P [ 0 ] [ 1 ] ;
const float P02 = EKF [ mdl_idx ] . P [ 0 ] [ 2 ] ;
const float P10 = EKF [ mdl_idx ] . P [ 1 ] [ 0 ] ;
const float P11 = EKF [ mdl_idx ] . P [ 1 ] [ 1 ] ;
const float P12 = EKF [ mdl_idx ] . P [ 1 ] [ 2 ] ;
const float P20 = EKF [ mdl_idx ] . P [ 2 ] [ 0 ] ;
const float P21 = EKF [ mdl_idx ] . P [ 2 ] [ 1 ] ;
const float P22 = EKF [ mdl_idx ] . P [ 2 ] [ 2 ] ;
// calculate innovation variance
EKF [ mdl_idx ] . S [ 0 ] [ 0 ] = P00 + velObsVar ;
EKF [ mdl_idx ] . S [ 1 ] [ 1 ] = P11 + velObsVar ;
EKF [ mdl_idx ] . S [ 0 ] [ 1 ] = P01 ;
EKF [ mdl_idx ] . S [ 1 ] [ 0 ] = P10 ;
// Perform a chi-square innovation consistency test and calculate a compression scale factor that limits the magnitude of innovations to 5-sigma
float S_det_inv = ( EKF [ mdl_idx ] . S [ 0 ] [ 0 ] * EKF [ mdl_idx ] . S [ 1 ] [ 1 ] - EKF [ mdl_idx ] . S [ 0 ] [ 1 ] * EKF [ mdl_idx ] . S [ 1 ] [ 0 ] ) ;
float innov_comp_scale_factor = 1.0f ;
if ( fabsf ( S_det_inv ) > 1E-6 f ) {
// Calculate elements for innovation covariance inverse matrix assuming symmetry
S_det_inv = 1.0f / S_det_inv ;
const float S_inv_NN = EKF [ mdl_idx ] . S [ 1 ] [ 1 ] * S_det_inv ;
const float S_inv_EE = EKF [ mdl_idx ] . S [ 0 ] [ 0 ] * S_det_inv ;
const float S_inv_NE = EKF [ mdl_idx ] . S [ 0 ] [ 1 ] * S_det_inv ;
// The following expression was derived symbolically from test ratio = transpose(innovation) * inverse(innovation variance) * innovation = [1x2] * [2,2] * [2,1] = [1,1]
const float test_ratio = EKF [ mdl_idx ] . innov [ 0 ] * ( EKF [ mdl_idx ] . innov [ 0 ] * S_inv_NN + EKF [ mdl_idx ] . innov [ 1 ] * S_inv_NE ) + EKF [ mdl_idx ] . innov [ 1 ] * ( EKF [ mdl_idx ] . innov [ 0 ] * S_inv_NE + EKF [ mdl_idx ] . innov [ 1 ] * S_inv_EE ) ;
// If the test ratio is greater than 25 (5 Sigma) then reduce the length of the innovation vector to clip it at 5-Sigma
// This protects from large measurement spikes
if ( test_ratio > 25.0f ) {
innov_comp_scale_factor = sqrtf ( 25.0f / test_ratio ) ;
}
} else {
// skip this fusion step because calculation is badly conditioned
return false ;
}
// calculate Kalman gain K and covariance matrix P
// autocode from https://github.com/priseborough/3_state_filter/blob/flightLogReplay-wip/calcK.txt
// and https://github.com/priseborough/3_state_filter/blob/flightLogReplay-wip/calcPmat.txt
const float t2 = P00 * velObsVar ;
const float t3 = P11 * velObsVar ;
const float t4 = velObsVar * velObsVar ;
const float t5 = P00 * P11 ;
const float t9 = P01 * P10 ;
const float t6 = t2 + t3 + t4 + t5 - t9 ;
float t7 ;
if ( fabsf ( t6 ) > 1e-6 f ) {
t7 = 1.0f / t6 ;
} else {
// skip this fusion step
return false ;
}
const float t8 = P11 + velObsVar ;
const float t10 = P00 + velObsVar ;
float K [ 3 ] [ 2 ] ;
K [ 0 ] [ 0 ] = - P01 * P10 * t7 + P00 * t7 * t8 ;
K [ 0 ] [ 1 ] = - P00 * P01 * t7 + P01 * t7 * t10 ;
K [ 1 ] [ 0 ] = - P10 * P11 * t7 + P10 * t7 * t8 ;
K [ 1 ] [ 1 ] = - P01 * P10 * t7 + P11 * t7 * t10 ;
K [ 2 ] [ 0 ] = - P10 * P21 * t7 + P20 * t7 * t8 ;
K [ 2 ] [ 1 ] = - P01 * P20 * t7 + P21 * t7 * t10 ;
const float t11 = P00 * P01 * t7 ;
const float t15 = P01 * t7 * t10 ;
const float t12 = t11 - t15 ;
const float t13 = P01 * P10 * t7 ;
const float t16 = P00 * t7 * t8 ;
const float t14 = t13 - t16 ;
const float t17 = t8 * t12 ;
const float t18 = P01 * t14 ;
const float t19 = t17 + t18 ;
const float t20 = t10 * t14 ;
const float t21 = P10 * t12 ;
const float t22 = t20 + t21 ;
const float t27 = P11 * t7 * t10 ;
const float t23 = t13 - t27 ;
const float t24 = P10 * P11 * t7 ;
const float t26 = P10 * t7 * t8 ;
const float t25 = t24 - t26 ;
const float t28 = t8 * t23 ;
const float t29 = P01 * t25 ;
const float t30 = t28 + t29 ;
const float t31 = t10 * t25 ;
const float t32 = P10 * t23 ;
const float t33 = t31 + t32 ;
const float t34 = P01 * P20 * t7 ;
const float t38 = P21 * t7 * t10 ;
const float t35 = t34 - t38 ;
const float t36 = P10 * P21 * t7 ;
const float t39 = P20 * t7 * t8 ;
const float t37 = t36 - t39 ;
const float t40 = t8 * t35 ;
const float t41 = P01 * t37 ;
const float t42 = t40 + t41 ;
const float t43 = t10 * t37 ;
const float t44 = P10 * t35 ;
const float t45 = t43 + t44 ;
const float min_var = 1e-6 f ;
EKF [ mdl_idx ] . P [ 0 ] [ 0 ] = fmaxf ( P00 - t12 * t19 - t14 * t22 , min_var ) ;
EKF [ mdl_idx ] . P [ 0 ] [ 1 ] = P01 - t19 * t23 - t22 * t25 ;
EKF [ mdl_idx ] . P [ 0 ] [ 2 ] = P02 - t19 * t35 - t22 * t37 ;
EKF [ mdl_idx ] . P [ 1 ] [ 0 ] = P10 - t12 * t30 - t14 * t33 ;
EKF [ mdl_idx ] . P [ 1 ] [ 1 ] = fmaxf ( P11 - t23 * t30 - t25 * t33 , min_var ) ;
EKF [ mdl_idx ] . P [ 1 ] [ 2 ] = P12 - t30 * t35 - t33 * t37 ;
EKF [ mdl_idx ] . P [ 2 ] [ 0 ] = P20 - t12 * t42 - t14 * t45 ;
EKF [ mdl_idx ] . P [ 2 ] [ 1 ] = P21 - t23 * t42 - t25 * t45 ;
EKF [ mdl_idx ] . P [ 2 ] [ 2 ] = fmaxf ( P22 - t35 * t42 - t37 * t45 , min_var ) ;
// force symmetry
forceSymmetry ( mdl_idx ) ;
// Apply state corrections and capture change in yaw angle
const float yaw_prev = EKF [ mdl_idx ] . X [ 2 ] ;
for ( uint8_t obs_index = 0 ; obs_index < 2 ; obs_index + + ) {
// apply the state corrections including the compression scale factor
for ( unsigned row = 0 ; row < 3 ; row + + ) {
EKF [ mdl_idx ] . X [ row ] - = K [ row ] [ obs_index ] * EKF [ mdl_idx ] . innov [ obs_index ] * innov_comp_scale_factor ;
}
}
const float yaw_delta = EKF [ mdl_idx ] . X [ 2 ] - yaw_prev ;
// apply the change in yaw angle to the AHRS taking advantage of sparseness in the yaw rotation matrix
const float cos_yaw = cosf ( yaw_delta ) ;
const float sin_yaw = sinf ( yaw_delta ) ;
float R_prev [ 2 ] [ 3 ] ;
memcpy ( & R_prev , & AHRS [ mdl_idx ] . R , sizeof ( R_prev ) ) ; // copy first two rows from 3x3
AHRS [ mdl_idx ] . R [ 0 ] [ 0 ] = R_prev [ 0 ] [ 0 ] * cos_yaw - R_prev [ 1 ] [ 0 ] * sin_yaw ;
AHRS [ mdl_idx ] . R [ 0 ] [ 1 ] = R_prev [ 0 ] [ 1 ] * cos_yaw - R_prev [ 1 ] [ 1 ] * sin_yaw ;
AHRS [ mdl_idx ] . R [ 0 ] [ 2 ] = R_prev [ 0 ] [ 2 ] * cos_yaw - R_prev [ 1 ] [ 2 ] * sin_yaw ;
AHRS [ mdl_idx ] . R [ 1 ] [ 0 ] = R_prev [ 0 ] [ 0 ] * sin_yaw + R_prev [ 1 ] [ 0 ] * cos_yaw ;
AHRS [ mdl_idx ] . R [ 1 ] [ 1 ] = R_prev [ 0 ] [ 1 ] * sin_yaw + R_prev [ 1 ] [ 1 ] * cos_yaw ;
AHRS [ mdl_idx ] . R [ 1 ] [ 2 ] = R_prev [ 0 ] [ 2 ] * sin_yaw + R_prev [ 1 ] [ 2 ] * cos_yaw ;
return true ;
}
2020-04-24 20:45:28 -03:00
void EKFGSF_yaw : : resetEKFGSF ( )
2020-03-10 03:45:40 -03:00
{
memset ( & GSF , 0 , sizeof ( GSF ) ) ;
vel_fuse_running = false ;
run_ekf_gsf = false ;
memset ( & EKF , 0 , sizeof ( EKF ) ) ;
const float yaw_increment = M_2PI / ( float ) N_MODELS_EKFGSF ;
for ( uint8_t mdl_idx = 0 ; mdl_idx < N_MODELS_EKFGSF ; mdl_idx + + ) {
// evenly space initial yaw estimates in the region between +-Pi
EKF [ mdl_idx ] . X [ 2 ] = - M_PI + ( 0.5f * yaw_increment ) + ( ( float ) mdl_idx * yaw_increment ) ;
// All filter models start with the same weight
GSF . weights [ mdl_idx ] = 1.0f / ( float ) N_MODELS_EKFGSF ;
// Use half yaw interval for yaw uncertainty as that is the maximum that the best model can be away from truth
GSF . yaw_variance = sq ( 0.5f * yaw_increment ) ;
EKF [ mdl_idx ] . P [ 2 ] [ 2 ] = GSF . yaw_variance ;
}
}
// returns the probability of a selected model output assuming a gaussian error distribution
float EKFGSF_yaw : : gaussianDensity ( const uint8_t mdl_idx ) const
{
const float t2 = EKF [ mdl_idx ] . S [ 0 ] [ 0 ] * EKF [ mdl_idx ] . S [ 1 ] [ 1 ] ;
const float t5 = EKF [ mdl_idx ] . S [ 0 ] [ 1 ] * EKF [ mdl_idx ] . S [ 1 ] [ 0 ] ;
const float t3 = t2 - t5 ; // determinant
const float t4 = 1.0f / MAX ( t3 , 1e-12 f ) ; // determinant inverse
// inv(S)
float invMat [ 2 ] [ 2 ] ;
invMat [ 0 ] [ 0 ] = t4 * EKF [ mdl_idx ] . S [ 1 ] [ 1 ] ;
invMat [ 1 ] [ 1 ] = t4 * EKF [ mdl_idx ] . S [ 0 ] [ 0 ] ;
invMat [ 0 ] [ 1 ] = - t4 * EKF [ mdl_idx ] . S [ 0 ] [ 1 ] ;
invMat [ 1 ] [ 0 ] = - t4 * EKF [ mdl_idx ] . S [ 1 ] [ 0 ] ;
// inv(S) * innovation
float tempVec [ 2 ] ;
tempVec [ 0 ] = invMat [ 0 ] [ 0 ] * EKF [ mdl_idx ] . innov [ 0 ] + invMat [ 0 ] [ 1 ] * EKF [ mdl_idx ] . innov [ 1 ] ;
tempVec [ 1 ] = invMat [ 1 ] [ 0 ] * EKF [ mdl_idx ] . innov [ 0 ] + invMat [ 1 ] [ 1 ] * EKF [ mdl_idx ] . innov [ 1 ] ;
// transpose(innovation) * inv(S) * innovation
float normDist = tempVec [ 0 ] * EKF [ mdl_idx ] . innov [ 0 ] + tempVec [ 1 ] * EKF [ mdl_idx ] . innov [ 1 ] ;
// convert from a normalised variance to a probability assuming a Gaussian distribution
normDist = expf ( - 0.5f * normDist ) ;
normDist * = sqrtf ( t4 ) / M_2PI ;
return normDist ;
}
void EKFGSF_yaw : : forceSymmetry ( const uint8_t mdl_idx )
{
float P01 = 0.5f * ( EKF [ mdl_idx ] . P [ 0 ] [ 1 ] + EKF [ mdl_idx ] . P [ 1 ] [ 0 ] ) ;
float P02 = 0.5f * ( EKF [ mdl_idx ] . P [ 0 ] [ 2 ] + EKF [ mdl_idx ] . P [ 2 ] [ 0 ] ) ;
float P12 = 0.5f * ( EKF [ mdl_idx ] . P [ 1 ] [ 2 ] + EKF [ mdl_idx ] . P [ 2 ] [ 1 ] ) ;
EKF [ mdl_idx ] . P [ 0 ] [ 1 ] = EKF [ mdl_idx ] . P [ 1 ] [ 0 ] = P01 ;
EKF [ mdl_idx ] . P [ 0 ] [ 2 ] = EKF [ mdl_idx ] . P [ 2 ] [ 0 ] = P02 ;
EKF [ mdl_idx ] . P [ 1 ] [ 2 ] = EKF [ mdl_idx ] . P [ 2 ] [ 1 ] = P12 ;
}
// Apply a body frame delta angle to the body to earth frame rotation matrix using a small angle approximation
2020-12-15 03:29:31 -04:00
Matrix3f EKFGSF_yaw : : updateRotMat ( const Matrix3f & R , const Vector3f & g ) const
2020-03-10 03:45:40 -03:00
{
Matrix3f ret = R ;
ret [ 0 ] [ 0 ] + = R [ 0 ] [ 1 ] * g [ 2 ] - R [ 0 ] [ 2 ] * g [ 1 ] ;
ret [ 0 ] [ 1 ] + = R [ 0 ] [ 2 ] * g [ 0 ] - R [ 0 ] [ 0 ] * g [ 2 ] ;
ret [ 0 ] [ 2 ] + = R [ 0 ] [ 0 ] * g [ 1 ] - R [ 0 ] [ 1 ] * g [ 0 ] ;
ret [ 1 ] [ 0 ] + = R [ 1 ] [ 1 ] * g [ 2 ] - R [ 1 ] [ 2 ] * g [ 1 ] ;
ret [ 1 ] [ 1 ] + = R [ 1 ] [ 2 ] * g [ 0 ] - R [ 1 ] [ 0 ] * g [ 2 ] ;
ret [ 1 ] [ 2 ] + = R [ 1 ] [ 0 ] * g [ 1 ] - R [ 1 ] [ 1 ] * g [ 0 ] ;
2020-04-23 01:11:03 -03:00
ret [ 2 ] [ 0 ] + = R [ 2 ] [ 1 ] * g [ 2 ] - R [ 2 ] [ 2 ] * g [ 1 ] ;
2020-03-10 03:45:40 -03:00
ret [ 2 ] [ 1 ] + = R [ 2 ] [ 2 ] * g [ 0 ] - R [ 2 ] [ 0 ] * g [ 2 ] ;
ret [ 2 ] [ 2 ] + = R [ 2 ] [ 0 ] * g [ 1 ] - R [ 2 ] [ 1 ] * g [ 0 ] ;
// Renormalise rows
float rowLengthSq ;
for ( uint8_t r = 0 ; r < 3 ; r + + ) {
rowLengthSq = ret [ r ] [ 0 ] * ret [ r ] [ 0 ] + ret [ r ] [ 1 ] * ret [ r ] [ 1 ] + ret [ r ] [ 2 ] * ret [ r ] [ 2 ] ;
if ( is_positive ( rowLengthSq ) ) {
// Use linear approximation for inverse sqrt taking advantage of the row length being close to 1.0
const float rowLengthInv = 1.5f - 0.5f * rowLengthSq ;
Vector3f & row = ret [ r ] ;
row * = rowLengthInv ;
}
}
return ret ;
}
2020-12-15 03:29:31 -04:00
bool EKFGSF_yaw : : getYawData ( float & yaw , float & yawVariance ) const
2020-03-10 03:45:40 -03:00
{
if ( ! vel_fuse_running ) {
return false ;
}
2020-04-22 21:44:03 -03:00
yaw = GSF . yaw ;
yawVariance = GSF . yaw_variance ;
2020-03-10 03:45:40 -03:00
return true ;
2020-04-23 01:11:03 -03:00
}
2020-06-07 19:42:17 -03:00
2020-12-15 03:29:31 -04:00
bool EKFGSF_yaw : : getVelInnovLength ( float & velInnovLength ) const
2020-11-15 20:33:58 -04:00
{
if ( ! vel_fuse_running ) {
return false ;
}
velInnovLength = 0.0f ;
for ( uint8_t mdl_idx = 0 ; mdl_idx < N_MODELS_EKFGSF ; mdl_idx + + ) {
velInnovLength + = GSF . weights [ mdl_idx ] * sqrtf ( ( sq ( EKF [ mdl_idx ] . innov [ 0 ] ) + sq ( EKF [ mdl_idx ] . innov [ 1 ] ) ) ) ;
}
return true ;
}
2020-06-07 19:42:17 -03:00
void EKFGSF_yaw : : setGyroBias ( Vector3f & gyroBias )
{
for ( uint8_t mdl_idx = 0 ; mdl_idx < N_MODELS_EKFGSF ; mdl_idx + + ) {
AHRS [ mdl_idx ] . gyro_bias = gyroBias ;
}
2020-12-15 03:29:31 -04:00
}