ardupilot/libraries/AP_OpticalFlow/AP_OpticalFlow_ADNS3080.cpp

564 lines
17 KiB
C++
Raw Normal View History

/*
* AP_OpticalFlow_ADNS3080.cpp - ADNS3080 OpticalFlow Library for Ardupilot Mega
* Code by Randy Mackay. DIYDrones.com
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
*/
#include "AP_OpticalFlow_ADNS3080.h"
#include "SPI.h"
#include "SPI3.h"
#include "AP_Semaphore.h"
#if defined(ARDUINO) && ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
#define AP_SPI_TIMEOUT 1000
// We use Serial Port 2 in SPI Mode
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
#define ADNS3080_SPI_MISO 50 // PB3
#define ADNS3080_SPI_MOSI 51 // PB2
#define ADNS3080_SPI_SCK 52 // PB1
#else // normal arduino SPI pins...these need to be checked
#define ADNS3080_SPI_MISO 12 // MISO
#define ADNS3080_SPI_MOSI 11 // MOSI
#define ADNS3080_SPI_SCK 13 // SCK
#endif
union NumericIntType
{
int16_t intValue;
uint16_t uintValue;
uint8_t byteValue[2];
};
// Constructors ////////////////////////////////////////////////////////////////
AP_OpticalFlow_ADNS3080::AP_OpticalFlow_ADNS3080(int16_t cs_pin, int16_t reset_pin) :
_cs_pin(cs_pin),
_reset_pin(reset_pin),
_spi_bus(ADNS3080_SPI_UNKNOWN),
_spi_semaphore(NULL)
{
num_pixels = ADNS3080_PIXELS_X;
field_of_view = AP_OPTICALFLOW_ADNS3080_08_FOV;
scaler = AP_OPTICALFLOW_ADNS3080_SCALER;
}
// Public Methods //////////////////////////////////////////////////////////////
// init - initialise sensor
// assumes SPI bus has been initialised but will attempt to initialise nonstandard SPI3 bus if required
bool
AP_OpticalFlow_ADNS3080::init(bool initCommAPI, AP_PeriodicProcess *scheduler, AP_Semaphore* spi_semaphore, AP_Semaphore* spi3_semaphore)
{
int8_t retry = 0;
bool retvalue = false;
// suspend timer while we set-up SPI communication
scheduler->suspend_timer();
pinMode(_cs_pin,OUTPUT);
if( _reset_pin != 0)
pinMode(ADNS3080_RESET,OUTPUT);
digitalWrite(_cs_pin,HIGH); // disable device (Chip select is active low)
// reset the device
reset();
// start the SPI library:
if( initCommAPI ) {
pinMode(ADNS3080_SPI_MOSI,OUTPUT);
pinMode(ADNS3080_SPI_MISO,INPUT);
pinMode(ADNS3080_SPI_SCK,OUTPUT);
SPI.begin();
SPI.setClockDivider(SPI_CLOCK_DIV8); // 2MHZ SPI rate
}
// check 3 times for the sensor on standard SPI bus
_spi_bus = ADNS3080_SPIBUS_1;
_spi_semaphore = spi_semaphore;
while( retvalue == false && retry < 3 ) {
if( read_register(ADNS3080_PRODUCT_ID) == 0x17 ) {
retvalue = true;
}
retry++;
}
2011-09-17 00:38:18 -03:00
// if not found, check 3 times on SPI3
if( !retvalue ) {
// start the SPI3 library:
if( initCommAPI ) {
SPI3.begin();
SPI3.setDataMode(SPI3_MODE3); // Mode3
SPI3.setSpeed(SPI3_SPEED_2MHZ); // 2MHZ SPI rate
}
_spi_bus = ADNS3080_SPIBUS_3;
_spi_semaphore = spi3_semaphore;
retry = 0;
while( retvalue == false && retry < 3 ) {
if( read_register(ADNS3080_PRODUCT_ID) == 0x17 ) {
retvalue = true;
}
retry++;
}
}
// resume timer
scheduler->resume_timer();
// if device is working register the global static read function to be called at 1khz
if( retvalue ) {
scheduler->register_process( AP_OpticalFlow_ADNS3080::read );
}else{
_spi_bus = ADNS3080_SPI_UNKNOWN;
}
return retvalue;
}
//
// backup_spi_settings - checks current SPI settings (clock speed, etc), sets values to what we need
//
void
AP_OpticalFlow_ADNS3080::backup_spi_settings()
{
if( _spi_bus == ADNS3080_SPIBUS_1 ) {
// store current spi mode and data rate
orig_spi_settings_spcr = SPCR & (CPOL | CPHA | SPR1 | SPR0);
// set to our required values
SPI.setDataMode(SPI_MODE3);
SPI.setClockDivider(SPI_CLOCK_DIV8); // 2MHZ SPI rate
}else if( _spi_bus == ADNS3080_SPIBUS_3 ) {
/* Wait for empty transmit buffer */
while ( !( UCSR3A & (1<<UDRE3)) ) ;
// store current spi values
orig_spi3_settings_ucsr3c = UCSR3C;
orig_spi3_settings_ubrr3 = UBRR3;
// set to our required values
SPI3.setDataMode(SPI3_MODE3);
SPI3.setSpeed(SPI3_SPEED_2MHZ); // 2MHZ SPI rate
}
}
// restore_spi_settings - restores SPI settings (clock speed, etc) to what their values were before the sensor used the bus
void
AP_OpticalFlow_ADNS3080::restore_spi_settings()
{
byte temp;
if( _spi_bus == ADNS3080_SPIBUS_1 ) {
// split off the two bits we need to write
temp = SPCR & ~(CPOL | CPHA | SPR1 | SPR0);
temp |= orig_spi_settings_spcr;
// write back the bits
SPCR = temp;
}else if( _spi_bus == ADNS3080_SPIBUS_3 ) {
/* Wait for empty transmit buffer */
while ( !( UCSR3A & (1<<UDRE3)) ) ;
// restore UCSRC3C (spi mode) and UBBR3 (speed)
UCSR3C = orig_spi3_settings_ucsr3c;
UBRR3 = orig_spi3_settings_ubrr3;
}
}
// Read a register from the sensor
byte
AP_OpticalFlow_ADNS3080::read_register(byte address)
{
uint8_t result = 0;
uint8_t junk = 0;
// get spi semaphore if required
if( _spi_semaphore != NULL ) {
// if failed to get semaphore then just quietly fail
if( !_spi_semaphore->get(this) ) {
return 0;
}
}
backup_spi_settings();
// take the chip select low to select the device
digitalWrite(_cs_pin, LOW);
if( _spi_bus == ADNS3080_SPIBUS_1 ) {
junk = SPI.transfer(address); // send the device the register you want to read:
delayMicroseconds(50); // small delay
result = SPI.transfer(0x00); // send a value of 0 to read the first byte returned:
}else if( _spi_bus == ADNS3080_SPIBUS_3 ) {
junk = SPI3.transfer(address); // send the device the register you want to read:
delayMicroseconds(50); // small delay
result = SPI3.transfer(0x00); // send a value of 0 to read the first byte returned:
}
// take the chip select high to de-select:
digitalWrite(_cs_pin, HIGH);
restore_spi_settings();
// get spi semaphore if required
if( _spi_semaphore != NULL ) {
_spi_semaphore->release(this);
}
return result;
}
// write a value to one of the sensor's registers
void
AP_OpticalFlow_ADNS3080::write_register(byte address, byte value)
{
byte junk = 0;
// get spi semaphore if required
if( _spi_semaphore != NULL ) {
// if failed to get semaphore then just quietly fail
if( !_spi_semaphore->get(this) ) {
return;
}
}
backup_spi_settings();
// take the chip select low to select the device
digitalWrite(_cs_pin, LOW);
if( _spi_bus == ADNS3080_SPIBUS_1 ) {
junk = SPI.transfer(address | 0x80 ); // send register address
delayMicroseconds(50); // small delay
junk = SPI.transfer(value); // send data
}else if( _spi_bus == ADNS3080_SPIBUS_3 ) {
junk = SPI3.transfer(address | 0x80 ); // send register address
delayMicroseconds(50); // small delay
junk = SPI3.transfer(value); // send data
}
// take the chip select high to de-select:
digitalWrite(_cs_pin, HIGH);
restore_spi_settings();
// get spi3 semaphore if required
if( _spi_semaphore != NULL ) {
_spi_semaphore->release(this);
}
}
// reset sensor by holding a pin high (or is it low?) for 10us.
void
AP_OpticalFlow_ADNS3080::reset()
{
// return immediately if the reset pin is not defined
if( _reset_pin == 0)
return;
digitalWrite(_reset_pin,HIGH); // reset sensor
delayMicroseconds(10);
digitalWrite(_reset_pin,LOW); // return sensor to normal
}
// read latest values from sensor and fill in x,y and totals
void
AP_OpticalFlow_ADNS3080::update(uint32_t now)
{
byte motion_reg;
surface_quality = (uint16_t)read_register(ADNS3080_SQUAL);
delayMicroseconds(50); // small delay
// check for movement, update x,y values
motion_reg = read_register(ADNS3080_MOTION);
_overflow = ((motion_reg & 0x10) != 0); // check if we've had an overflow
if( (motion_reg & 0x80) != 0 ) {
raw_dx = ((int8_t)read_register(ADNS3080_DELTA_X));
delayMicroseconds(50); // small delay
raw_dy = ((int8_t)read_register(ADNS3080_DELTA_Y));
_motion = true;
}else{
raw_dx = 0;
raw_dy = 0;
}
last_update = millis();
apply_orientation_matrix();
}
void
AP_OpticalFlow_ADNS3080::disable_serial_pullup()
{
byte regVal = read_register(ADNS3080_EXTENDED_CONFIG);
regVal = (regVal | ADNS3080_SERIALNPU_OFF);
delayMicroseconds(50); // small delay
write_register(ADNS3080_EXTENDED_CONFIG, regVal);
}
// get_led_always_on - returns true if LED is always on, false if only on when required
bool
AP_OpticalFlow_ADNS3080::get_led_always_on()
{
return ( (read_register(ADNS3080_CONFIGURATION_BITS) & 0x40) > 0 );
}
// set_led_always_on - set parameter to true if you want LED always on, otherwise false for only when required
void
AP_OpticalFlow_ADNS3080::set_led_always_on( bool alwaysOn )
{
byte regVal = read_register(ADNS3080_CONFIGURATION_BITS);
2011-09-17 00:38:18 -03:00
regVal = (regVal & 0xbf) | (alwaysOn << 6);
delayMicroseconds(50); // small delay
write_register(ADNS3080_CONFIGURATION_BITS, regVal);
}
// returns resolution (either 400 or 1600 counts per inch)
int16_t
AP_OpticalFlow_ADNS3080::get_resolution()
{
if( (read_register(ADNS3080_CONFIGURATION_BITS) & 0x10) == 0 )
return 400;
else
return 1600;
}
// set parameter to 400 or 1600 counts per inch
void
AP_OpticalFlow_ADNS3080::set_resolution(uint16_t resolution)
{
byte regVal = read_register(ADNS3080_CONFIGURATION_BITS);
if( resolution == ADNS3080_RESOLUTION_400 ) {
regVal &= ~0x10;
scaler = AP_OPTICALFLOW_ADNS3080_SCALER;
}else if( resolution == ADNS3080_RESOLUTION_1600) {
regVal |= 0x10;
scaler = AP_OPTICALFLOW_ADNS3080_SCALER * 4;
}
delayMicroseconds(50); // small delay
write_register(ADNS3080_CONFIGURATION_BITS, regVal);
// this will affect conversion factors so update them
update_conversion_factors();
}
// get_frame_rate_auto - return whether frame rate is set to "auto" or manual
bool
AP_OpticalFlow_ADNS3080::get_frame_rate_auto()
{
byte regVal = read_register(ADNS3080_EXTENDED_CONFIG);
2011-09-17 00:38:18 -03:00
if( (regVal & 0x01) != 0 ) {
return false;
}else{
return true;
}
}
// set_frame_rate_auto - set frame rate to auto (true) or manual (false)
void
AP_OpticalFlow_ADNS3080::set_frame_rate_auto(bool auto_frame_rate)
{
byte regVal = read_register(ADNS3080_EXTENDED_CONFIG);
delayMicroseconds(50); // small delay
if( auto_frame_rate == true ) {
// set specific frame period
write_register(ADNS3080_FRAME_PERIOD_MAX_BOUND_LOWER,0xE0);
delayMicroseconds(50); // small delay
write_register(ADNS3080_FRAME_PERIOD_MAX_BOUND_UPPER,0x1A);
delayMicroseconds(50); // small delay
// decide what value to update in extended config
regVal = (regVal & ~0x01);
}else{
// decide what value to update in extended config
regVal = (regVal & ~0x01) | 0x01;
}
write_register(ADNS3080_EXTENDED_CONFIG, regVal);
}
// get frame period
uint16_t
AP_OpticalFlow_ADNS3080::get_frame_period()
{
NumericIntType aNum;
aNum.byteValue[1] = read_register(ADNS3080_FRAME_PERIOD_UPPER);
delayMicroseconds(50); // small delay
aNum.byteValue[0] = read_register(ADNS3080_FRAME_PERIOD_LOWER);
return aNum.uintValue;
}
// set frame period
void
2012-09-24 18:10:22 -03:00
AP_OpticalFlow_ADNS3080::set_frame_period(uint16_t period)
{
NumericIntType aNum;
aNum.uintValue = period;
// set frame rate to manual
set_frame_rate_auto(false);
delayMicroseconds(50); // small delay
// set specific frame period
write_register(ADNS3080_FRAME_PERIOD_MAX_BOUND_LOWER,aNum.byteValue[0]);
delayMicroseconds(50); // small delay
write_register(ADNS3080_FRAME_PERIOD_MAX_BOUND_UPPER,aNum.byteValue[1]);
}
uint16_t
AP_OpticalFlow_ADNS3080::get_frame_rate()
{
uint32_t clockSpeed = ADNS3080_CLOCK_SPEED;
uint16_t rate = clockSpeed / get_frame_period();
return rate;
}
void
AP_OpticalFlow_ADNS3080::set_frame_rate(uint16_t rate)
{
uint32_t clockSpeed = ADNS3080_CLOCK_SPEED;
uint16_t period = (uint16_t)(clockSpeed / (uint32_t)rate);
set_frame_period(period);
}
// get_shutter_speed_auto - returns true if shutter speed is adjusted automatically, false if manual
bool
AP_OpticalFlow_ADNS3080::get_shutter_speed_auto()
{
uint8_t regVal = read_register(ADNS3080_EXTENDED_CONFIG);
if( (regVal & 0x02) > 0 ) {
return false;
}else{
return true;
}
}
// set_shutter_speed_auto - set shutter speed to auto (true), or manual (false)
void
AP_OpticalFlow_ADNS3080::set_shutter_speed_auto(bool auto_shutter_speed)
{
uint8_t regVal = read_register(ADNS3080_EXTENDED_CONFIG);
delayMicroseconds(50); // small delay
if( auto_shutter_speed ) {
// return shutter speed max to default
write_register(ADNS3080_SHUTTER_MAX_BOUND_LOWER,0x8c);
delayMicroseconds(50); // small delay
write_register(ADNS3080_SHUTTER_MAX_BOUND_UPPER,0x20);
delayMicroseconds(50); // small delay
// determine value to put into extended config
2011-09-17 00:38:18 -03:00
regVal &= ~0x02;
}else{
// determine value to put into extended config
regVal |= 0x02;
}
write_register(ADNS3080_EXTENDED_CONFIG, regVal);
delayMicroseconds(50); // small delay
}
// get_shutter_speed_auto - returns true if shutter speed is adjusted automatically, false if manual
uint16_t
AP_OpticalFlow_ADNS3080::get_shutter_speed()
{
NumericIntType aNum;
aNum.byteValue[1] = read_register(ADNS3080_SHUTTER_UPPER);
delayMicroseconds(50); // small delay
aNum.byteValue[0] = read_register(ADNS3080_SHUTTER_LOWER);
return aNum.uintValue;
}
// set_shutter_speed_auto - set shutter speed to auto (true), or manual (false)
2011-09-17 00:38:18 -03:00
void
2012-09-24 18:10:22 -03:00
AP_OpticalFlow_ADNS3080::set_shutter_speed(uint16_t shutter_speed)
{
NumericIntType aNum;
aNum.uintValue = shutter_speed;
// set shutter speed to manual
set_shutter_speed_auto(false);
delayMicroseconds(50); // small delay
// set specific shutter speed
write_register(ADNS3080_SHUTTER_MAX_BOUND_LOWER,aNum.byteValue[0]);
delayMicroseconds(50); // small delay
write_register(ADNS3080_SHUTTER_MAX_BOUND_UPPER,aNum.byteValue[1]);
delayMicroseconds(50); // small delay
// larger delay
delay(50);
// need to update frame period to cause shutter value to take effect
aNum.byteValue[1] = read_register(ADNS3080_FRAME_PERIOD_UPPER);
delayMicroseconds(50); // small delay
aNum.byteValue[0] = read_register(ADNS3080_FRAME_PERIOD_LOWER);
delayMicroseconds(50); // small delay
write_register(ADNS3080_FRAME_PERIOD_MAX_BOUND_LOWER,aNum.byteValue[0]);
delayMicroseconds(50); // small delay
write_register(ADNS3080_FRAME_PERIOD_MAX_BOUND_UPPER,aNum.byteValue[1]);
delayMicroseconds(50); // small delay
}
// clear_motion - will cause the Delta_X, Delta_Y, and internal motion registers to be cleared
void
AP_OpticalFlow_ADNS3080::clear_motion()
{
write_register(ADNS3080_MOTION_CLEAR,0xFF); // writing anything to this register will clear the sensor's motion registers
x = 0;
y = 0;
dx = 0;
dy = 0;
_motion = false;
}
// get_pixel_data - captures an image from the sensor and stores it to the pixe_data array
2011-09-17 00:38:18 -03:00
void
AP_OpticalFlow_ADNS3080::print_pixel_data()
{
int16_t i,j;
bool isFirstPixel = true;
uint8_t regValue;
uint8_t pixelValue;
// write to frame capture register to force capture of frame
write_register(ADNS3080_FRAME_CAPTURE,0x83);
// wait 3 frame periods + 10 nanoseconds for frame to be captured
delayMicroseconds(1510); // min frame speed is 2000 frames/second so 1 frame = 500 nano seconds. so 500 x 3 + 10 = 1510
// display the pixel data
for( i=0; i<ADNS3080_PIXELS_Y; i++ ) {
for( j=0; j<ADNS3080_PIXELS_X; j++ ) {
regValue = read_register(ADNS3080_FRAME_CAPTURE);
if( isFirstPixel && (regValue & 0x40) == 0 ) {
Serial.print_P(PSTR("failed to find first pixel"));
}
isFirstPixel = false;
pixelValue = ( regValue << 2);
Serial.print(pixelValue,DEC);
if( j!= ADNS3080_PIXELS_X-1 )
Serial.print_P(PSTR(","));
delayMicroseconds(50);
}
Serial.println();
}
// hardware reset to restore sensor to normal operation
reset();
}