ardupilot/libraries/SITL/SIM_FlightAxis.cpp

651 lines
20 KiB
C++
Raw Normal View History

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
simulator connector for FlightAxis
*/
#include "SIM_FlightAxis.h"
#if AP_SIM_FLIGHTAXIS_ENABLED
#include <arpa/inet.h>
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdarg.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/time.h>
#include <AP_HAL/AP_HAL.h>
#include <AP_Logger/AP_Logger.h>
extern const AP_HAL::HAL& hal;
using namespace SITL;
const AP_Param::GroupInfo FlightAxis::var_info[] = {
// @Param: OPTS
// @DisplayName: FlightAxis options
// @Description: Bitmask of FlightAxis options
// @Bitmask: 0: Reset position on startup
// @Bitmask: 1: Swap first 4 and last 4 servos (for quadplane testing)
// @Bitmask: 2: Demix heli servos and send roll/pitch/collective/yaw
// @Bitmask: 3: Don't print frame rate stats
// @User: Advanced
AP_GROUPINFO("OPTS", 1, FlightAxis, _options, uint32_t(Option::ResetPosition)),
AP_GROUPEND
};
/*
we use a thread for socket creation to reduce the impact of socket
creation latency. These condition variables are used to synchronise
the thread
*/
static pthread_cond_t sockcond1 = PTHREAD_COND_INITIALIZER;
static pthread_cond_t sockcond2 = PTHREAD_COND_INITIALIZER;
static pthread_mutex_t sockmtx = PTHREAD_MUTEX_INITIALIZER;
// the asprintf() calls are not worth checking for SITL
#pragma GCC diagnostic ignored "-Wunused-result"
static const struct {
const char *name;
float value;
bool save;
} sim_defaults[] = {
2020-04-21 21:10:39 -03:00
{ "BRD_OPTIONS", 0},
{ "AHRS_EKF_TYPE", 10 },
{ "INS_GYR_CAL", 0 },
{ "BATT_MONITOR", 4 },
{ "RC1_MIN", 1000, true },
{ "RC1_MAX", 2000, true },
{ "RC2_MIN", 1000, true },
{ "RC2_MAX", 2000, true },
{ "RC3_MIN", 1000, true },
{ "RC3_MAX", 2000, true },
{ "RC4_MIN", 1000, true },
{ "RC4_MAX", 2000, true },
{ "RC2_REVERSED", 1 }, // interlink has reversed rc2
{ "SERVO1_MIN", 1000 },
{ "SERVO1_MAX", 2000 },
{ "SERVO2_MIN", 1000 },
{ "SERVO2_MAX", 2000 },
{ "SERVO3_MIN", 1000 },
{ "SERVO3_MAX", 2000 },
{ "SERVO4_MIN", 1000 },
{ "SERVO4_MAX", 2000 },
{ "SERVO5_MIN", 1000 },
{ "SERVO5_MAX", 2000 },
{ "SERVO6_MIN", 1000 },
{ "SERVO6_MAX", 2000 },
{ "SERVO6_MIN", 1000 },
{ "SERVO6_MAX", 2000 },
{ "INS_ACC2OFFS_X", 0.001 },
{ "INS_ACC2OFFS_Y", 0.001 },
{ "INS_ACC2OFFS_Z", 0.001 },
{ "INS_ACC2SCAL_X", 1.001 },
{ "INS_ACC2SCAL_Y", 1.001 },
{ "INS_ACC2SCAL_Z", 1.001 },
{ "INS_ACCOFFS_X", 0.001 },
{ "INS_ACCOFFS_Y", 0.001 },
{ "INS_ACCOFFS_Z", 0.001 },
{ "INS_ACCSCAL_X", 1.001 },
{ "INS_ACCSCAL_Y", 1.001 },
{ "INS_ACCSCAL_Z", 1.001 },
{ "RPM1_TYPE", 10 },
};
/*
get system timestamp in seconds
*/
static double timestamp_sec()
{
struct timeval tval;
gettimeofday(&tval,NULL);
return tval.tv_sec + (tval.tv_usec*1.0e-6);
}
2019-08-15 01:01:24 -03:00
FlightAxis::FlightAxis(const char *frame_str) :
Aircraft(frame_str)
{
AP::sitl()->models.flightaxis_ptr = this;
AP_Param::setup_object_defaults(this, var_info);
use_time_sync = false;
rate_hz = 250 / target_speedup;
if(strstr(frame_str, "helidemix") != nullptr) {
_options.set(_options | uint32_t(Option::HeliDemix));
}
if(strstr(frame_str, "rev4") != nullptr) {
_options.set(_options | uint32_t(Option::Rev4Servos));
}
const char *colon = strchr(frame_str, ':');
if (colon) {
controller_ip = colon+1;
}
for (uint8_t i=0; i<ARRAY_SIZE(sim_defaults); i++) {
AP_Param::set_default_by_name(sim_defaults[i].name, sim_defaults[i].value);
if (sim_defaults[i].save) {
enum ap_var_type ptype;
AP_Param *p = AP_Param::find(sim_defaults[i].name, &ptype);
if (!p->configured()) {
p->save();
}
}
}
if (!hal.scheduler->thread_create(FUNCTOR_BIND_MEMBER(&FlightAxis::socket_creator, void), "SocketCreator", 8192,
AP_HAL::Scheduler::PRIORITY_BOOST, 0)) {
printf("Failed to create socket_creator thread\n");
}
}
/*
extremely primitive SOAP parser that assumes the format used by FlightAxis
*/
void FlightAxis::parse_reply(const char *reply)
{
const char *reply0 = reply;
for (uint16_t i=0; i<num_keys; i++) {
const char *p = strstr(reply, keytable[i].key);
if (p == nullptr) {
p = strstr(reply0, keytable[i].key);
}
if (p == nullptr) {
printf("Failed to find key %s\n", keytable[i].key);
controller_started = false;
break;
}
p += strlen(keytable[i].key) + 1;
double v;
if (strncmp(p, "true", 4) == 0) {
v = 1;
} else if (strncmp(p, "false", 5) == 0) {
v = 0;
} else {
v = atof(p);
}
keytable[i].ref = v;
// this assumes key order and allows us to decode arrays
p = strchr(p, '>');
if (p != nullptr) {
reply = p;
}
}
}
/*
make a SOAP request, returning body of reply
*/
bool FlightAxis::soap_request_start(const char *action, const char *fmt, ...)
{
va_list ap;
char *req1;
if (sock) {
delete sock;
sock = nullptr;
}
va_start(ap, fmt);
vasprintf(&req1, fmt, ap);
va_end(ap);
pthread_mutex_lock(&sockmtx);
while (socknext == nullptr) {
pthread_cond_wait(&sockcond1, &sockmtx);
}
sock = socknext;
socknext = nullptr;
pthread_cond_broadcast(&sockcond2);
pthread_mutex_unlock(&sockmtx);
char *req;
asprintf(&req, R"(POST / HTTP/1.1
soapaction: '%s'
content-length: %u
content-type: text/xml;charset='UTF-8'
Connection: Keep-Alive
%s)",
action,
(unsigned)strlen(req1), req1);
sock->send(req, strlen(req));
free(req1);
free(req);
return true;
}
char *FlightAxis::soap_request_end(uint32_t timeout_ms)
{
if (!sock) {
return nullptr;
}
if (!sock->pollin(timeout_ms)) {
return nullptr;
}
sock->set_blocking(true);
ssize_t ret = sock->recv(replybuf, sizeof(replybuf)-1, 1000);
if (ret <= 0) {
return nullptr;
}
replybuf[ret] = 0;
char *p = strstr(replybuf, "Content-Length: ");
if (p == nullptr) {
delete sock;
sock = nullptr;
printf("No Content-Length\n");
return nullptr;
}
// get the content length
uint32_t content_length = strtoul(p+16, nullptr, 10);
char *body = strstr(p, "\r\n\r\n");
if (body == nullptr) {
printf("No body\n");
delete sock;
sock = nullptr;
return nullptr;
}
body += 4;
// get the rest of the body
int32_t expected_length = content_length + (body - replybuf);
if (expected_length >= (int32_t)sizeof(replybuf)) {
printf("Reply too large %i\n", expected_length);
delete sock;
sock = nullptr;
return nullptr;
}
while (ret < expected_length) {
ssize_t ret2 = sock->recv(&replybuf[ret], sizeof(replybuf)-(1+ret), 1000);
if (ret2 <= 0) {
delete sock;
sock = nullptr;
return nullptr;
}
2016-04-26 03:37:17 -03:00
// nul terminate
replybuf[ret+ret2] = 0;
ret += ret2;
}
delete sock;
sock = nullptr;
return strdup(replybuf);
}
void FlightAxis::exchange_data(const struct sitl_input &input)
{
if (!sock &&
(!controller_started ||
is_zero(state.m_flightAxisControllerIsActive) ||
!is_zero(state.m_resetButtonHasBeenPressed))) {
printf("Starting controller at %s\n", controller_ip);
// call a restore first. This allows us to connect after the aircraft is changed in RealFlight
soap_request_start("RestoreOriginalControllerDevice", R"(<?xml version='1.0' encoding='UTF-8'?>
<soap:Envelope xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/' xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'>
<soap:Body>
<RestoreOriginalControllerDevice><a>1</a><b>2</b></RestoreOriginalControllerDevice>
</soap:Body>
</soap:Envelope>)");
soap_request_end(1000);
if(option_is_set(Option::ResetPosition)) {
soap_request_start("ResetAircraft", R"(<?xml version='1.0' encoding='UTF-8'?>
<soap:Envelope xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/' xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'>
<soap:Body>
<ResetAircraft><a>1</a><b>2</b></ResetAircraft>
</soap:Body>
</soap:Envelope>)");
soap_request_end(1000);
}
soap_request_start("InjectUAVControllerInterface", R"(<?xml version='1.0' encoding='UTF-8'?>
<soap:Envelope xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/' xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'>
<soap:Body>
<InjectUAVControllerInterface><a>1</a><b>2</b></InjectUAVControllerInterface>
</soap:Body>
</soap:Envelope>)");
soap_request_end(1000);
activation_frame_counter = frame_counter;
controller_started = true;
}
// maximum number of servos to send is 12 with new FlightAxis
float scaled_servos[12];
for (uint8_t i=0; i<ARRAY_SIZE(scaled_servos); i++) {
scaled_servos[i] = (input.servos[i] - 1000) / 1000.0f;
}
if (option_is_set(Option::Rev4Servos)) {
// swap first 4 and last 4 servos, for quadplane testing
float saved[4];
memcpy(saved, &scaled_servos[0], sizeof(saved));
memcpy(&scaled_servos[0], &scaled_servos[4], sizeof(saved));
memcpy(&scaled_servos[4], saved, sizeof(saved));
}
if (option_is_set(Option::HeliDemix)) {
// FlightAxis expects "roll/pitch/collective/yaw" input
float swash1 = scaled_servos[0];
float swash2 = scaled_servos[1];
float swash3 = scaled_servos[2];
float roll_rate = swash1 - swash2;
2024-02-22 13:57:27 -04:00
float pitch_rate = ((swash1+swash2) / 2.0f - swash3);
float col = (swash1 + swash2 + swash3) / 3.0;
scaled_servos[0] = constrain_float(roll_rate + 0.5, 0, 1);
scaled_servos[1] = constrain_float(pitch_rate + 0.5, 0, 1);
2024-02-22 13:57:27 -04:00
scaled_servos[2] = constrain_float(col, 0, 1);
}
const uint16_t channels = hal.scheduler->is_system_initialized()?4095:0;
if (!sock) {
soap_request_start("ExchangeData", R"(<?xml version='1.0' encoding='UTF-8'?><soap:Envelope xmlns:soap='http://schemas.xmlsoap.org/soap/envelope/' xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'>
<soap:Body>
<ExchangeData>
<pControlInputs>
<m-selectedChannels>%u</m-selectedChannels>
<m-channelValues-0to1>
<item>%.4f</item>
<item>%.4f</item>
<item>%.4f</item>
<item>%.4f</item>
<item>%.4f</item>
<item>%.4f</item>
<item>%.4f</item>
<item>%.4f</item>
<item>%.4f</item>
<item>%.4f</item>
<item>%.4f</item>
<item>%.4f</item>
</m-channelValues-0to1>
</pControlInputs>
</ExchangeData>
</soap:Body>
</soap:Envelope>)",
channels,
scaled_servos[0],
scaled_servos[1],
scaled_servos[2],
scaled_servos[3],
scaled_servos[4],
scaled_servos[5],
scaled_servos[6],
scaled_servos[7],
scaled_servos[8],
scaled_servos[9],
scaled_servos[10],
scaled_servos[11]);
}
char *reply = nullptr;
if (sock) {
reply = soap_request_end(0);
if (reply == nullptr) {
sock_error_count++;
if (sock_error_count >= 10000 && timestamp_sec() - last_recv_sec > 1) {
printf("socket timeout\n");
delete sock;
sock = nullptr;
sock_error_count = 0;
last_recv_sec = timestamp_sec();
}
}
}
if (reply) {
sock_error_count = 0;
last_recv_sec = timestamp_sec();
double lastt_s = state.m_currentPhysicsTime_SEC;
parse_reply(reply);
double dt = state.m_currentPhysicsTime_SEC - lastt_s;
if (dt > 0 && dt < 0.1) {
if (average_frame_time_s < 1.0e-6) {
average_frame_time_s = dt;
}
average_frame_time_s = average_frame_time_s * 0.98 + dt * 0.02;
}
socket_frame_counter++;
free(reply);
}
}
/*
update the FlightAxis simulation by one time step
*/
void FlightAxis::update(const struct sitl_input &input)
{
last_input = input;
2020-12-16 22:19:19 -04:00
exchange_data(input);
double dt_seconds = state.m_currentPhysicsTime_SEC - last_time_s;
if (dt_seconds < 0) {
// cope with restarting RealFlight while connected
initial_time_s = time_now_us * 1.0e-6f;
last_time_s = state.m_currentPhysicsTime_SEC;
position_offset.zero();
return;
}
if (dt_seconds < 0.00001f) {
float delta_time = 0.001;
// don't go past the next expected frame
if (delta_time + extrapolated_s > average_frame_time_s) {
delta_time = average_frame_time_s - extrapolated_s;
}
if (delta_time <= 0) {
return;
}
time_now_us += delta_time * 1.0e6;
extrapolate_sensors(delta_time);
update_position();
update_mag_field_bf();
extrapolated_s += delta_time;
report_FPS();
return;
}
extrapolated_s = 0;
if (initial_time_s <= 0) {
dt_seconds = 0.001f;
initial_time_s = state.m_currentPhysicsTime_SEC - dt_seconds;
}
/*
the quaternion convention in realflight seems to have Z negative
*/
Quaternion quat(state.m_orientationQuaternion_W,
state.m_orientationQuaternion_Y,
state.m_orientationQuaternion_X,
-state.m_orientationQuaternion_Z);
quat.rotation_matrix(dcm);
gyro = Vector3f(radians(constrain_float(state.m_rollRate_DEGpSEC, -2000, 2000)),
radians(constrain_float(state.m_pitchRate_DEGpSEC, -2000, 2000)),
-radians(constrain_float(state.m_yawRate_DEGpSEC, -2000, 2000))) * target_speedup;
velocity_ef = Vector3f(state.m_velocityWorldU_MPS,
state.m_velocityWorldV_MPS,
state.m_velocityWorldW_MPS);
position = Vector3d(state.m_aircraftPositionY_MTR,
state.m_aircraftPositionX_MTR,
-state.m_altitudeASL_MTR - home.alt*0.01);
position.xy() += origin.get_distance_NE_double(home);
accel_body = {
float(state.m_accelerationBodyAX_MPS2),
float(state.m_accelerationBodyAY_MPS2),
float(state.m_accelerationBodyAZ_MPS2)
};
// accel on the ground is nasty in realflight, and prevents helicopter disarm
2018-08-14 23:37:10 -03:00
if (!is_zero(state.m_isTouchingGround)) {
Vector3f accel_ef = (velocity_ef - last_velocity_ef) / dt_seconds;
accel_ef.z -= GRAVITY_MSS;
accel_body = dcm.transposed() * accel_ef;
}
// limit to 16G to match pixhawk
float a_limit = GRAVITY_MSS*16;
accel_body.x = constrain_float(accel_body.x, -a_limit, a_limit);
accel_body.y = constrain_float(accel_body.y, -a_limit, a_limit);
accel_body.z = constrain_float(accel_body.z, -a_limit, a_limit);
// offset based on first position to account for offset in RF world
2018-08-14 23:37:10 -03:00
if (position_offset.is_zero() || !is_zero(state.m_resetButtonHasBeenPressed)) {
position_offset = position;
}
position -= position_offset;
airspeed = state.m_airspeed_MPS;
/* for pitot airspeed we need the airspeed along the X axis. We
can't get that from m_airspeed_MPS, so instead we calculate it
from wind vector and ground speed
*/
2022-07-29 22:45:27 -03:00
wind_ef = Vector3f(state.m_windY_MPS,state.m_windX_MPS,state.m_windZ_MPS);
Vector3f airspeed_3d_ef = velocity_ef - wind_ef;
Vector3f airspeed3d = dcm.mul_transpose(airspeed_3d_ef);
if (last_imu_rotation != ROTATION_NONE) {
2022-09-12 19:40:39 -03:00
airspeed3d = sitl->ahrs_rotation * airspeed3d;
}
airspeed_pitot = MAX(airspeed3d.x,0);
#if 0
printf("WIND: %.1f %.1f %.1f AS3D %.1f %.1f %.1f\n",
state.m_windX_MPS,
state.m_windY_MPS,
state.m_windZ_MPS,
airspeed3d.x,
airspeed3d.y,
airspeed3d.z);
#endif
battery_voltage = MAX(state.m_batteryVoltage_VOLTS, 0);
battery_current = MAX(state.m_batteryCurrentDraw_AMPS, 0);
rpm[0] = state.m_heliMainRotorRPM;
rpm[1] = state.m_propRPM;
2023-02-03 18:43:33 -04:00
motor_mask = 3;
/*
the interlink interface supports 12 input channels
*/
rcin_chan_count = 12;
for (uint8_t i=0; i<rcin_chan_count; i++) {
rcin[i] = state.rcin[i];
}
update_position();
time_advance();
uint64_t new_time_us = (state.m_currentPhysicsTime_SEC - initial_time_s)*1.0e6;
if (new_time_us < time_now_us) {
uint64_t dt_us = time_now_us - new_time_us;
if (dt_us > 500000) {
// time going backwards
time_now_us = new_time_us;
}
} else {
uint64_t dt_us = new_time_us - time_now_us;
const uint64_t glitch_threshold_us = 50000;
const uint64_t glitch_max_us = 2000000;
if (dt_us > glitch_threshold_us && dt_us < glitch_max_us) {
// we've had a network glitch, compensate by advancing initial time
float adjustment_s = (dt_us-glitch_threshold_us)*1.0e-6;
initial_time_s += adjustment_s;
printf("glitch %.2fs\n", adjustment_s);
dt_us = glitch_threshold_us;
glitch_count++;
}
time_now_us += dt_us;
}
last_time_s = state.m_currentPhysicsTime_SEC;
last_velocity_ef = velocity_ef;
// update magnetic field
update_mag_field_bf();
2023-01-23 16:52:19 -04:00
// one rangefinder
if (is_positive(dcm.c.z)) {
rangefinder_m[0] = state.m_altitudeAGL_MTR / dcm.c.z;
} else {
rangefinder_m[0] = nanf("");
2023-01-23 16:52:19 -04:00
}
report_FPS();
}
/*
report frame rates
*/
void FlightAxis::report_FPS(void)
{
if (frame_counter++ % 1000 == 0) {
2018-08-14 23:37:10 -03:00
if (!is_zero(last_frame_count_s)) {
uint64_t frames = socket_frame_counter - last_socket_frame_counter;
last_socket_frame_counter = socket_frame_counter;
double dt = state.m_currentPhysicsTime_SEC - last_frame_count_s;
if(!option_is_set(Option::SilenceFPS)) {
printf("%.2f/%.2f FPS avg=%.2f glitches=%u\n",
frames / dt, 1000 / dt, 1.0/average_frame_time_s, unsigned(glitch_count));
}
} else {
printf("Initial position %f %f %f\n", position.x, position.y, position.z);
}
last_frame_count_s = state.m_currentPhysicsTime_SEC;
}
}
void FlightAxis::socket_creator(void)
{
socket_pid = getpid();
while (true) {
pthread_mutex_lock(&sockmtx);
while (socknext != nullptr) {
pthread_cond_wait(&sockcond2, &sockmtx);
}
pthread_mutex_unlock(&sockmtx);
auto *sck = NEW_NOTHROW SocketAPM_native(false);
if (sck == nullptr) {
usleep(500);
continue;
}
/*
don't let the connection take more than 100ms (10Hz). Longer
than this and we are better off trying for a new socket
*/
if (!sck->connect_timeout(controller_ip, controller_port, 100)) {
::printf("connect failed\n");
delete sck;
usleep(5000);
continue;
}
sck->set_blocking(false);
socknext = sck;
pthread_mutex_lock(&sockmtx);
pthread_cond_broadcast(&sockcond1);
pthread_mutex_unlock(&sockmtx);
}
}
#endif // AP_SIM_FLIGHTAXIS_ENABLED