ardupilot/libraries/AP_RTC/AP_RTC.cpp

362 lines
10 KiB
C++
Raw Normal View History

#include "AP_RTC_config.h"
#if AP_RTC_ENABLED
2018-04-10 08:43:03 -03:00
#include "AP_RTC.h"
#include <AP_HAL/AP_HAL.h>
#include <AP_Math/AP_Math.h>
#include <GCS_MAVLink/GCS.h>
#include <AP_Common/time.h>
2018-04-10 08:43:03 -03:00
#define DEBUG_RTC_SHIFT 0
#if DEBUG_RTC_SHIFT
#include <AP_Logger/AP_Logger.h>
#endif
2018-04-10 08:43:03 -03:00
extern const AP_HAL::HAL& hal;
AP_RTC::AP_RTC()
{
AP_Param::setup_object_defaults(this, var_info);
if (_singleton != nullptr) {
// it's an error to get here. But I don't want to include
// AP_HAL here
return;
}
_singleton = this;
}
// table of user settable parameters
const AP_Param::GroupInfo AP_RTC::var_info[] = {
// @Param: _TYPES
// @DisplayName: Allowed sources of RTC time
// @Description: Specifies which sources of UTC time will be accepted
// @Bitmask: 0:GPS,1:MAVLINK_SYSTEM_TIME,2:HW
// @User: Advanced
AP_GROUPINFO("_TYPES", 1, AP_RTC, allowed_types, 1),
2019-10-07 03:46:25 -03:00
// @Param: _TZ_MIN
// @DisplayName: Timezone offset from UTC
// @Description: Adds offset in +- minutes from UTC to calculate local time
// @Range: -720 +840
// @User: Advanced
AP_GROUPINFO("_TZ_MIN", 2, AP_RTC, tz_min, 0),
AP_GROUPEND
};
2018-04-10 08:43:03 -03:00
void AP_RTC::set_utc_usec(uint64_t time_utc_usec, source_type type)
{
const uint64_t oldest_acceptable_date_us = 1640995200ULL*1000*1000; // 2022-01-01 0:00
// only allow time to be moved forward from the same sourcetype
// while the vehicle is disarmed:
if (hal.util->get_soft_armed()) {
if (type >= rtc_source_type) {
// e.g. system-time message when we've been set by the GPS
return;
}
} else {
// vehicle is disarmed; accept (e.g.) GPS time source updates
if (type > rtc_source_type) {
// e.g. system-time message when we've been set by the GPS
return;
}
2018-04-10 08:43:03 -03:00
}
// check it's from an allowed sources:
if (!(allowed_types & (1<<type))) {
return;
}
// don't allow old times
if (time_utc_usec < oldest_acceptable_date_us) {
return;
}
2018-04-10 08:43:03 -03:00
const uint64_t now = AP_HAL::micros64();
const int64_t tmp = int64_t(time_utc_usec) - int64_t(now);
if (tmp < rtc_shift) {
// can't allow time to go backwards, ever
return;
}
2020-01-03 20:05:51 -04:00
WITH_SEMAPHORE(rsem);
2018-04-10 08:43:03 -03:00
#if DEBUG_RTC_SHIFT
uint64_t old_utc = 0;
UNUSED_RESULT(get_utc_usec(old_utc));
#endif
2018-04-10 08:43:03 -03:00
rtc_shift = tmp;
// update hardware clock:
if (type != SOURCE_HW) {
hal.util->set_hw_rtc(time_utc_usec);
}
rtc_source_type = type;
#if HAL_GCS_ENABLED
2018-04-10 08:43:03 -03:00
// update signing timestamp
GCS_MAVLINK::update_signing_timestamp(time_utc_usec);
2020-03-29 19:49:54 -03:00
#endif
#if DEBUG_RTC_SHIFT
uint64_t new_utc = 0;
UNUSED_RESULT(get_utc_usec(new_utc));
if (old_utc != new_utc) {
if (AP::logger().should_log(0xFFFF)){
// log to AP_Logger
// @LoggerMessage: RTC
// @Description: Information about RTC clock resets
// @Field: TimeUS: Time since system startup
2024-11-20 22:45:06 -04:00
// @Field: old_utc: old time
// @Field: new_utc: new time
AP::logger().WriteStreaming(
"RTC",
"TimeUS,old_utc,new_utc",
"sss",
"FFF",
"QQQ",
AP_HAL::micros64(),
old_utc,
new_utc
);
}
}
#endif
2018-04-10 08:43:03 -03:00
}
bool AP_RTC::get_utc_usec(uint64_t &usec) const
{
if (rtc_source_type == SOURCE_NONE) {
return false;
}
usec = AP_HAL::micros64() + rtc_shift;
return true;
}
void AP_RTC::clock_ms_to_hms_fields(const uint64_t time_ms, uint8_t &hour, uint8_t &min, uint8_t &sec, uint16_t &ms) const
2018-04-10 08:43:03 -03:00
{
// separate time into ms, sec, min, hour and days but all expressed in milliseconds
ms = time_ms % 1000;
uint32_t sec_ms = (time_ms % (60 * 1000)) - ms;
uint32_t min_ms = (time_ms % (60 * 60 * 1000)) - sec_ms - ms;
uint32_t hour_ms = (time_ms % (24 * 60 * 60 * 1000)) - min_ms - sec_ms - ms;
// convert times as milliseconds into appropriate units
sec = sec_ms / 1000;
min = min_ms / (60 * 1000);
hour = hour_ms / (60 * 60 * 1000);
}
bool AP_RTC::clock_s_to_date_fields(const uint32_t utc_sec32, uint16_t& year, uint8_t& month, uint8_t& day, uint8_t &hour, uint8_t &min, uint8_t &sec, uint8_t &wday) const
{
const time_t utc_sec = utc_sec32;
struct tm tmd {};
struct tm* tm = gmtime_r(&utc_sec, &tmd);
if (tm == nullptr) {
return false;
}
year = tm->tm_year+1900; /* Year, 20xx. */
month = tm->tm_mon; /* Month. [0-11] */
day = tm->tm_mday; /* Day. [1-31] */
hour = tm->tm_hour; /* Hours. [0-23] */
min = tm->tm_min; /* Minutes. [0-59] */
sec = tm->tm_sec; /* Seconds. [0-60] (1 leap second) */
wday = tm->tm_wday; /* week day, [0-6] */
return true;
}
/*
return true for leap years
*/
bool AP_RTC::_is_leap(uint32_t y)
{
y += 1900;
return (y % 4) == 0 && ((y % 100) != 0 || (y % 400) == 0);
}
/*
implementation of timegm() (from Samba)
*/
uint32_t AP_RTC::_timegm(struct tm &tm)
{
static const uint8_t ndays[2][12] = {
{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
{31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}};
uint32_t res = 0;
if (tm.tm_mon > 12 ||
tm.tm_mday > 31 ||
tm.tm_min > 60 ||
tm.tm_sec > 60 ||
tm.tm_hour > 24) {
/* invalid tm structure */
return 0;
}
for (auto i = 70; i < tm.tm_year; i++) {
res += _is_leap(i) ? 366 : 365;
}
for (auto i = 0; i < tm.tm_mon; i++) {
res += ndays[_is_leap(tm.tm_year)][i];
}
res += tm.tm_mday - 1U;
res *= 24U;
res += tm.tm_hour;
res *= 60U;
res += tm.tm_min;
res *= 60U;
res += tm.tm_sec;
return res;
}
uint32_t AP_RTC::date_fields_to_clock_s(uint16_t year, uint8_t month, uint8_t day, uint8_t hour, uint8_t min, uint8_t sec) const
{
struct tm tm {};
tm.tm_year = year - 1900;
tm.tm_mon = month;
tm.tm_mday = day;
tm.tm_hour = hour;
tm.tm_min = min;
tm.tm_sec = sec;
return _timegm(tm);
}
bool AP_RTC::get_system_clock_utc(uint8_t &hour, uint8_t &min, uint8_t &sec, uint16_t &ms) const
{
// get time of day in ms
uint64_t time_ms;
if (!get_utc_usec(time_ms)) {
return false;
}
time_ms /= 1000U;
clock_ms_to_hms_fields(time_ms, hour, min, sec, ms);
return true;
2018-04-10 08:43:03 -03:00
}
bool AP_RTC::get_local_time(uint8_t &hour, uint8_t &min, uint8_t &sec, uint16_t &ms) const
2019-10-07 03:46:25 -03:00
{
// get local time of day in ms
uint64_t time_ms;
2019-10-07 03:46:25 -03:00
if (!get_utc_usec(time_ms)) {
return false;
}
time_ms /= 1000U;
const uint64_t ms_local = time_ms + (tz_min * 60000);
clock_ms_to_hms_fields(ms_local, hour, min, sec, ms);
2019-10-07 03:46:25 -03:00
return true;
}
// get milliseconds from now to a target time of day expressed as
// hour, min, sec, ms. Match starts from first value that is not
// -1. I.e. specifying hour=-1, minutes=10 will ignore the hour and
// return time until 10 minutes past 12am (utc) NOTE: if this time has
// just past then you can expect a return value of roughly 86340000 -
// the number of milliseconds in a day.
2018-04-10 08:43:03 -03:00
uint32_t AP_RTC::get_time_utc(int32_t hour, int32_t min, int32_t sec, int32_t ms)
{
// determine highest value specified (0=none, 1=ms, 2=sec, 3=min, 4=hour)
int8_t largest_element = 0;
if (hour != -1) {
largest_element = 4;
} else if (min != -1) {
largest_element = 3;
} else if (sec != -1) {
largest_element = 2;
} else if (ms != -1) {
largest_element = 1;
} else {
// exit immediately if no time specified
return 0;
}
// get start_time_ms as h, m, s, ms
uint8_t curr_hour, curr_min, curr_sec;
uint16_t curr_ms;
if (!get_system_clock_utc(curr_hour, curr_min, curr_sec, curr_ms)) {
return 0;
}
2018-04-10 08:43:03 -03:00
int32_t total_delay_ms = 0;
// calculate ms to target
if (largest_element >= 1) {
total_delay_ms += ms - curr_ms;
}
if (largest_element == 1 && total_delay_ms < 0) {
return static_cast<uint32_t>(total_delay_ms + 1000);
2018-04-10 08:43:03 -03:00
}
// calculate sec to target
if (largest_element >= 2) {
total_delay_ms += (sec - curr_sec)*1000;
}
if (largest_element == 2 && total_delay_ms < 0) {
return static_cast<uint32_t>(total_delay_ms + (60*1000));
2018-04-10 08:43:03 -03:00
}
// calculate min to target
if (largest_element >= 3) {
total_delay_ms += (min - curr_min)*60*1000;
}
if (largest_element == 3 && total_delay_ms < 0) {
return static_cast<uint32_t>(total_delay_ms + (60*60*1000));
2018-04-10 08:43:03 -03:00
}
// calculate hours to target
if (largest_element >= 4) {
total_delay_ms += (hour - curr_hour)*60*60*1000;
}
if (largest_element == 4 && total_delay_ms < 0) {
return static_cast<uint32_t>(total_delay_ms + (24*60*60*1000));
2018-04-10 08:43:03 -03:00
}
// total delay in milliseconds
return static_cast<uint32_t>(total_delay_ms);
}
2023-06-26 22:36:58 -03:00
// get date and time. Returns true on success and fills in year, month, day, hour, min, sec and ms
// year is the regular Gregorian year, month is 0~11, day is 1~31, hour is 0~23, minute is 0~59, second is 0~60 (1 leap second), ms is 0~999
bool AP_RTC::get_date_and_time_utc(uint16_t& year, uint8_t& month, uint8_t& day, uint8_t &hour, uint8_t &min, uint8_t &sec, uint16_t &ms) const
2023-06-26 22:36:58 -03:00
{
// get local time of day in ms
uint64_t time_us = 0;
if (!get_utc_usec(time_us)) {
return false;
}
time_t utc_sec = time_us / (1000U * 1000U);
struct tm tmd {};
struct tm* tm = gmtime_r(&utc_sec, &tmd);
2023-06-26 22:36:58 -03:00
if (tm == nullptr) {
return false;
}
year = tm->tm_year+1900; /* Year - 1900. */
month = tm->tm_mon; /* Month. [0-11] */
day = tm->tm_mday; /* Day. [1-31] */
hour = tm->tm_hour; /* Hours. [0-23] */
min = tm->tm_min; /* Minutes. [0-59] */
sec = tm->tm_sec; /* Seconds. [0-60] (1 leap second) */
ms = (time_us / 1000U) % 1000U; /* milliseconds [0-999] */
2023-06-26 22:36:58 -03:00
return true;
}
2018-04-10 08:43:03 -03:00
// singleton instance
AP_RTC *AP_RTC::_singleton;
namespace AP {
AP_RTC &rtc()
{
return *AP_RTC::get_singleton();
}
}
#endif // AP_RTC_ENABLED