ardupilot/APMrover2/mode_steering.cpp

54 lines
2.2 KiB
C++
Raw Normal View History

2017-07-18 23:17:45 -03:00
#include "mode.h"
#include "Rover.h"
void ModeSteering::update()
{
// get speed forward
float speed;
if (!attitude_control.get_forward_speed(speed)) {
// no valid speed so stop
g2.motors.set_throttle(0.0f);
g2.motors.set_steering(0.0f);
return;
}
float desired_steering, desired_speed;
get_pilot_desired_steering_and_speed(desired_steering, desired_speed);
bool reversed = is_negative(desired_speed);
// determine if pilot is requesting pivot turn
if (g2.motors.have_skid_steering() && is_zero(desired_speed)) {
// pivot turning using turn rate controller
// convert pilot steering input to desired turn rate in radians/sec
const float target_turn_rate = (desired_steering / 4500.0f) * radians(g2.acro_turn_rate);
// run steering turn rate controller and throttle controller
const float steering_out = attitude_control.get_steering_out_rate(target_turn_rate,
g2.motors.limit.steer_left,
2018-05-21 22:05:20 -03:00
g2.motors.limit.steer_right,
rover.G_Dt);
g2.motors.set_steering(steering_out * 4500.0f);
} else {
// In steering mode we control lateral acceleration directly.
// For regular steering vehicles we use the maximum lateral acceleration
// at full steering lock for this speed: V^2/R where R is the radius of turn.
float max_g_force = speed * speed / MAX(g2.turn_radius, 0.1f);
max_g_force = constrain_float(max_g_force, 0.1f, g.turn_max_g * GRAVITY_MSS);
// convert pilot steering input to desired lateral acceleration
float desired_lat_accel = max_g_force * (desired_steering / 4500.0f);
// reverse target lateral acceleration if backing up
if (reversed) {
desired_lat_accel = -desired_lat_accel;
}
// run lateral acceleration to steering controller
calc_steering_from_lateral_acceleration(desired_lat_accel, reversed);
}
2017-07-18 23:17:45 -03:00
// run speed to throttle controller
calc_throttle(desired_speed, false, true);
2017-07-18 23:17:45 -03:00
}