mirror of https://github.com/ArduPilot/ardupilot
151 lines
4.6 KiB
C++
151 lines
4.6 KiB
C++
|
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
||
|
/*
|
||
|
This program is free software: you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation, either version 3 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
This program is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||
|
*/
|
||
|
/*
|
||
|
helicopter simulator class
|
||
|
*/
|
||
|
|
||
|
#include "SIM_Helicopter.h"
|
||
|
#include <stdio.h>
|
||
|
|
||
|
/*
|
||
|
constructor
|
||
|
*/
|
||
|
Helicopter::Helicopter(const char *home_str, const char *frame_str) :
|
||
|
Aircraft(home_str, frame_str),
|
||
|
terminal_rotation_rate(4*radians(360.0)),
|
||
|
hover_throttle(0.65f),
|
||
|
terminal_velocity(40.0f),
|
||
|
hover_lean(8.0f),
|
||
|
yaw_zero(0.1f),
|
||
|
rotor_rot_accel(radians(20)),
|
||
|
roll_rate_max(radians(1400)),
|
||
|
pitch_rate_max(radians(1400)),
|
||
|
yaw_rate_max(radians(1400)),
|
||
|
rsc_setpoint(0.8f)
|
||
|
{
|
||
|
mass = 2.13f;
|
||
|
|
||
|
/*
|
||
|
scaling from motor power to Newtons. Allows the copter
|
||
|
to hover against gravity when the motor is at hover_throttle
|
||
|
*/
|
||
|
thrust_scale = (mass * GRAVITY_MSS) / hover_throttle;
|
||
|
|
||
|
// calculate lateral thrust ratio for tail rotor
|
||
|
tail_thrust_scale = sinf(radians(hover_lean)) * thrust_scale / yaw_zero;
|
||
|
|
||
|
frame_height = 0.1;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
update the helicopter simulation by one time step
|
||
|
*/
|
||
|
void Helicopter::update(const struct sitl_input &input)
|
||
|
{
|
||
|
float swash1 = (input.servos[0]-1000) / 1000.0f;
|
||
|
float swash2 = (input.servos[1]-1000) / 1000.0f;
|
||
|
float swash3 = (input.servos[2]-1000) / 1000.0f;
|
||
|
float tail_rotor = (input.servos[3]-1000) / 1000.0f;
|
||
|
float rsc = (input.servos[7]-1000) / 1000.0f;
|
||
|
|
||
|
// how much time has passed?
|
||
|
float delta_time = frame_time_us * 1.0e-6f;
|
||
|
|
||
|
float thrust = (rsc/rsc_setpoint)*(swash1+swash2+swash3)/3.0f;
|
||
|
|
||
|
// very simplistic mapping to body euler rates
|
||
|
float roll_rate = swash1 - swash2;
|
||
|
float pitch_rate = (swash1 + swash2)/2.0f - swash3;
|
||
|
float yaw_rate = tail_rotor - 0.5f;
|
||
|
|
||
|
float rsc_scale = rsc/rsc_setpoint;
|
||
|
|
||
|
roll_rate *= rsc_scale;
|
||
|
pitch_rate *= rsc_scale;
|
||
|
yaw_rate *= rsc_scale;
|
||
|
|
||
|
// rotational acceleration, in rad/s/s, in body frame
|
||
|
Vector3f rot_accel;
|
||
|
rot_accel.x = roll_rate * roll_rate_max;
|
||
|
rot_accel.y = pitch_rate * pitch_rate_max;
|
||
|
rot_accel.z = yaw_rate * yaw_rate_max;
|
||
|
|
||
|
// rotational air resistance
|
||
|
rot_accel.x -= gyro.x * radians(5000.0) / terminal_rotation_rate;
|
||
|
rot_accel.y -= gyro.y * radians(5000.0) / terminal_rotation_rate;
|
||
|
rot_accel.z -= gyro.z * radians(400.0) / terminal_rotation_rate;
|
||
|
|
||
|
// torque effect on tail
|
||
|
rot_accel.z += (rsc_scale+thrust) * rotor_rot_accel;
|
||
|
|
||
|
// update rotational rates in body frame
|
||
|
gyro += rot_accel * delta_time;
|
||
|
|
||
|
// update attitude
|
||
|
dcm.rotate(gyro * delta_time);
|
||
|
dcm.normalize();
|
||
|
|
||
|
// air resistance
|
||
|
Vector3f air_resistance = -velocity_ef * (GRAVITY_MSS/terminal_velocity);
|
||
|
|
||
|
// scale thrust to newtons
|
||
|
thrust *= thrust_scale;
|
||
|
|
||
|
accel_body = Vector3f(0, yaw_rate * rsc_scale * tail_thrust_scale, -thrust / mass);
|
||
|
Vector3f accel_earth = dcm * accel_body;
|
||
|
accel_earth += Vector3f(0, 0, GRAVITY_MSS);
|
||
|
accel_earth += air_resistance;
|
||
|
|
||
|
// if we're on the ground, then our vertical acceleration is limited
|
||
|
// to zero. This effectively adds the force of the ground on the aircraft
|
||
|
if (on_ground(position) && accel_earth.z > 0) {
|
||
|
accel_earth.z = 0;
|
||
|
}
|
||
|
|
||
|
// work out acceleration as seen by the accelerometers. It sees the kinematic
|
||
|
// acceleration (ie. real movement), plus gravity
|
||
|
accel_body = dcm.transposed() * (accel_earth + Vector3f(0, 0, -GRAVITY_MSS));
|
||
|
|
||
|
// add some noise
|
||
|
add_noise(thrust / thrust_scale);
|
||
|
|
||
|
// new velocity vector
|
||
|
velocity_ef += accel_earth * delta_time;
|
||
|
|
||
|
// new position vector
|
||
|
Vector3f old_position = position;
|
||
|
position += velocity_ef * delta_time;
|
||
|
|
||
|
// constrain height to the ground
|
||
|
if (on_ground(position)) {
|
||
|
if (!on_ground(old_position)) {
|
||
|
printf("Hit ground at %f m/s\n", velocity_ef.z);
|
||
|
|
||
|
velocity_ef.zero();
|
||
|
|
||
|
// zero roll/pitch, but keep yaw
|
||
|
float r, p, y;
|
||
|
dcm.to_euler(&r, &p, &y);
|
||
|
dcm.from_euler(0, 0, y);
|
||
|
|
||
|
position.z = -(ground_level + frame_height - home.alt*0.01f);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// update lat/lon/altitude
|
||
|
update_position();
|
||
|
}
|