ardupilot/libraries/AP_DCM/AP_DCM.cpp

599 lines
17 KiB
C++
Raw Normal View History

#define RADX100 0.000174532925
#define DEGX100 5729.57795
/*
APM_DCM_FW.cpp - DCM AHRS Library, fixed wing version, for Ardupilot Mega
Code by Doug Weibel, Jordi Mu<EFBFBD>oz and Jose Julio. DIYDrones.com
This library works with the ArduPilot Mega and "Oilpan"
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
Methods:
update_DCM() : Updates the AHRS by integrating the rotation matrix over time using the IMU object data
get_gyro() : Returns gyro vector corrected for bias
get_accel() : Returns accelerometer vector
get_dcm_matrix() : Returns dcm matrix
*/
#include <AP_DCM.h>
#define OUTPUTMODE 1 // This is just used for debugging, remove later
#define ToRad(x) (x*0.01745329252) // *pi/180
#define ToDeg(x) (x*57.2957795131) // *180/pi
//#define Kp_ROLLPITCH 0.05967 // .0014 * 418/9.81 Pitch&Roll Drift Correction Proportional Gain
//#define Ki_ROLLPITCH 0.00001278 // 0.0000003 * 418/9.81 Pitch&Roll Drift Correction Integrator Gain
//#define Ki_ROLLPITCH 0.0 // 0.0000003 * 418/9.81 Pitch&Roll Drift Correction Integrator Gain
//#define Kp_YAW 0.8 // Yaw Drift Correction Porportional Gain
//#define Ki_YAW 0.00004 // Yaw Drift CorrectionIntegrator Gain
// this is the speed in cm/s above which we first get a yaw lock with
// the GPS
#define GPS_SPEED_MIN 300
// this is the speed in cm/s at which we stop using drift correction
// from the GPS and wait for the ground speed to get above GPS_SPEED_MIN
#define GPS_SPEED_RESET 100
void
AP_DCM::set_compass(Compass *compass)
{
_compass = compass;
}
/**************************************************/
void
AP_DCM::update_DCM_fast(void)
{
float delta_t;
Vector3f accel;
_imu->update();
_gyro_vector = _imu->get_gyro(); // Get current values for IMU sensors
// add the current accel vector into our averaging filter
accel = _imu->get_accel();
_accel_sum += accel;
_accel_sum_count++;
delta_t = _imu->get_delta_time();
matrix_update(delta_t); // Integrate the DCM matrix
switch(_toggle++){
case 0:
normalize(); // Normalize the DCM matrix
break;
case 1:
euler_rp(); // Calculate pitch, roll, yaw for stabilization and navigation
break;
case 2:
_accel_vector = _accel_sum / _accel_sum_count;
_accel_sum_count = 0;
_accel_sum.zero();
drift_correction(); // Normalize the DCM matrix
break;
case 3:
euler_rp(); // Calculate pitch, roll, yaw for stabilization and navigation
break;
case 4:
euler_yaw();
break;
default:
euler_rp(); // Calculate pitch, roll, yaw for stabilization and navigation
_toggle = 0;
break;
}
}
/**************************************************/
void
AP_DCM::update_DCM(void)
{
float delta_t;
Vector3f accel;
_imu->update();
_gyro_vector = _imu->get_gyro(); // Get current values for IMU sensors
// update_DCM() doesn't do averaging over the accel vectors,
// just a mild lowpass filter
accel = _imu->get_accel();
_accel_vector = (accel * 0.5) + (_accel_vector * 0.5);
delta_t = _imu->get_delta_time();
matrix_update(delta_t); // Integrate the DCM matrix
normalize(); // Normalize the DCM matrix
drift_correction(); // Perform drift correction
euler_angles(); // Calculate pitch, roll, yaw for stabilization and navigation
}
/**************************************************/
//For Debugging
/*
void
printm(const char *l, Matrix3f &m)
{ Serial.println(" "); Serial.println(l);
Serial.print(m.a.x, 12); Serial.print(" "); Serial.print(m.a.y, 12); Serial.print(" "); Serial.println(m.a.z, 12);
Serial.print(m.b.x, 12); Serial.print(" "); Serial.print(m.b.y, 12); Serial.print(" "); Serial.println(m.b.z, 12);
Serial.print(m.c.x, 12); Serial.print(" "); Serial.print(m.c.y, 12); Serial.print(" "); Serial.println(m.c.z, 12);
Serial.print(*(uint32_t *)&(m.a.x), HEX); Serial.print(" "); Serial.print(*(uint32_t *)&(m.a.y), HEX); Serial.print(" "); Serial.println(*(uint32_t *)&(m.a.z), HEX);
Serial.print(*(uint32_t *)&(m.b.x), HEX); Serial.print(" "); Serial.print(*(uint32_t *)&(m.b.y), HEX); Serial.print(" "); Serial.println(*(uint32_t *)&(m.b.z), HEX);
Serial.print(*(uint32_t *)&(m.c.x), HEX); Serial.print(" "); Serial.print(*(uint32_t *)&(m.c.y), HEX); Serial.print(" "); Serial.println(*(uint32_t *)&(m.c.z), HEX);
}
*/
/**************************************************/
void
AP_DCM::matrix_update(float _G_Dt)
{
Matrix3f update_matrix;
Matrix3f temp_matrix;
_omega_integ_corr = _gyro_vector + _omega_I; // Used for _centripetal correction (theoretically better than _omega)
_omega = _omega_integ_corr + _omega_P; // Equation 16, adding proportional and integral correction terms
_omega_smoothed = (_omega_smoothed * 0.5) + (_omega_integ_corr * 0.5);
#if OUTPUTMODE == 1
float tmp = _G_Dt * _omega.x;
update_matrix.b.z = -tmp; // -delta Theta x
update_matrix.c.y = tmp; // delta Theta x
tmp = _G_Dt * _omega.y;
update_matrix.c.x = -tmp; // -delta Theta y
update_matrix.a.z = tmp; // delta Theta y
tmp = _G_Dt * _omega.z;
update_matrix.b.x = tmp; // delta Theta z
update_matrix.a.y = -tmp; // -delta Theta z
update_matrix.a.x = 0;
update_matrix.b.y = 0;
update_matrix.c.z = 0;
#else // Uncorrected data (no drift correction)
update_matrix.a.x = 0;
update_matrix.a.y = -_G_Dt * _gyro_vector.z;
update_matrix.a.z = _G_Dt * _gyro_vector.y;
update_matrix.b.x = _G_Dt * _gyro_vector.z;
update_matrix.b.y = 0;
update_matrix.b.z = -_G_Dt * _gyro_vector.x;
update_matrix.c.x = -_G_Dt * _gyro_vector.y;
update_matrix.c.y = _G_Dt * _gyro_vector.x;
update_matrix.c.z = 0;
#endif
temp_matrix = _dcm_matrix * update_matrix;
_dcm_matrix = _dcm_matrix + temp_matrix; // Equation 17
}
// adjust an accelerometer vector for centripetal force
void
AP_DCM::accel_adjust(Vector3f &accel)
{
float veloc;
2011-12-06 19:56:16 -04:00
veloc = _gps->ground_speed / 100; // We are working with acceleration in m/s^2 units
// We are working with a modified version of equation 26 as
// our IMU object reports acceleration in the positive axis
// direction as positive
// Equation 26 broken up into separate pieces
accel.y -= _omega_smoothed.z * veloc;
accel.z += _omega_smoothed.y * veloc;
}
2011-12-13 06:32:50 -04:00
/*
reset the DCM matrix and omega. Used on ground start, and on
extreme errors in the matrix
*/
void
AP_DCM::matrix_reset(bool recover_eulers)
2011-12-13 06:32:50 -04:00
{
if (_compass != NULL) {
_compass->null_offsets_disable();
}
// reset the integration terms
2011-12-13 06:32:50 -04:00
_omega_I.x = 0.0f;
_omega_I.y = 0.0f;
_omega_I.z = 0.0f;
_omega_P = _omega_I;
_omega_integ_corr = _omega_I;
_omega_smoothed = _omega_I;
_omega = _omega_I;
// if the caller wants us to try to recover to the current
// attitude then calculate the dcm matrix from the current
// roll/pitch/yaw values
if (recover_eulers && !isnan(roll) && !isnan(pitch) && !isnan(yaw)) {
rotation_matrix_from_euler(_dcm_matrix, roll, pitch, yaw);
} else {
// otherwise make it flat
rotation_matrix_from_euler(_dcm_matrix, 0, 0, 0);
}
if (_compass != NULL) {
_compass->null_offsets_enable(); // This call is needed to restart the nulling
// Otherwise the reset in the DCM matrix can mess up
// the nulling
}
2011-12-13 06:32:50 -04:00
}
/*
check the DCM matrix for pathological values
*/
void
AP_DCM::check_matrix(void)
{
if (_dcm_matrix.is_nan()) {
//Serial.printf("ERROR: DCM matrix NAN\n");
SITL_debug("ERROR: DCM matrix NAN\n");
renorm_blowup_count++;
matrix_reset(true);
return;
}
// some DCM matrix values can lead to an out of range error in
// the pitch calculation via asin(). These NaN values can
// feed back into the rest of the DCM matrix via the
// error_course value.
if (!(_dcm_matrix.c.x < 1.0 &&
_dcm_matrix.c.x > -1.0)) {
// We have an invalid matrix. Force a normalisation.
renorm_range_count++;
normalize();
if (_dcm_matrix.is_nan() ||
fabs(_dcm_matrix.c.x) > 10) {
// normalisation didn't fix the problem! We're
// in real trouble. All we can do is reset
//Serial.printf("ERROR: DCM matrix error. _dcm_matrix.c.x=%f\n",
// _dcm_matrix.c.x);
SITL_debug("ERROR: DCM matrix error. _dcm_matrix.c.x=%f\n",
_dcm_matrix.c.x);
renorm_blowup_count++;
matrix_reset(true);
}
}
}
/*************************************************
Direction Cosine Matrix IMU: Theory
William Premerlani and Paul Bizard
Numerical errors will gradually reduce the orthogonality conditions expressed by equation 5
to approximations rather than identities. In effect, the axes in the two frames of reference no
longer describe a rigid body. Fortunately, numerical error accumulates very slowly, so it is a
simple matter to stay ahead of it.
We call the process of enforcing the orthogonality conditions <EFBFBD>renormalization<EFBFBD>.
*/
void
AP_DCM::normalize(void)
{
float error = 0;
Vector3f temporary[3];
int problem = 0;
error = _dcm_matrix.a * _dcm_matrix.b; // eq.18
temporary[0] = _dcm_matrix.b;
temporary[1] = _dcm_matrix.a;
temporary[0] = _dcm_matrix.a - (temporary[0] * (0.5f * error)); // eq.19
temporary[1] = _dcm_matrix.b - (temporary[1] * (0.5f * error)); // eq.19
temporary[2] = temporary[0] % temporary[1]; // c= a x b // eq.20
_dcm_matrix.a = renorm(temporary[0], problem);
_dcm_matrix.b = renorm(temporary[1], problem);
_dcm_matrix.c = renorm(temporary[2], problem);
if (problem == 1) { // Our solution is blowing up and we will force back to initial condition. Hope we are not upside down!
matrix_reset(true);
}
}
/**************************************************/
Vector3f
AP_DCM::renorm(Vector3f const &a, int &problem)
{
float renorm_val;
// numerical errors will slowly build up over time in DCM,
// causing inaccuracies. We can keep ahead of those errors
// using the renormalization technique from the DCM IMU paper
// (see equations 18 to 21).
// For APM we don't bother with the taylor expansion
// optimisation from the paper as on our 2560 CPU the cost of
// the sqrt() is 44 microseconds, and the small time saving of
// the taylor expansion is not worth the potential of
// additional error buildup.
// Note that we can get significant renormalisation values
// when we have a larger delta_t due to a glitch eleswhere in
// APM, such as a I2c timeout or a set of EEPROM writes. While
// we would like to avoid these if possible, if it does happen
// we don't want to compound the error by making DCM less
// accurate.
renorm_val = 1.0 / sqrt(a * a);
// keep the average for reporting
_renorm_val_sum += renorm_val;
_renorm_val_count++;
if (!(renorm_val < 2.0 && renorm_val > 0.5)) {
// this is larger than it should get - log it as a warning
renorm_range_count++;
if (!(renorm_val < 1.0e6 && renorm_val > 1.0e-6)) {
// we are getting values which are way out of
// range, we will reset the matrix and hope we
// can recover our attitude using drift
// correction before we hit the ground!
problem = 1;
//Serial.printf("ERROR: DCM renormalisation error. renorm_val=%f\n",
// renorm_val);
SITL_debug("ERROR: DCM renormalisation error. renorm_val=%f\n",
renorm_val);
renorm_blowup_count++;
}
}
return (a * renorm_val);
}
/**************************************************/
void
AP_DCM::drift_correction(void)
{
float error_course = 0;
float accel_weight;
float integrator_magnitude;
Vector3f accel;
Vector3f error;
float error_norm;
const float gravity_squared = (9.80665*9.80665);
accel = _accel_vector;
// if enabled, use the GPS to correct our accelerometer vector
// for centripetal forces
if(_centripetal &&
_gps != NULL &&
_gps->status() == GPS::GPS_OK) {
accel_adjust(accel);
}
//*****Roll and Pitch***************
// calculate the z component of the accel vector assuming it
// has a length of 9.8. This discards the z accelerometer
// sensor reading completely. Logs show that the z accel is
// the noisest, and it seems that using just the x and y accel
// values gives a better attitude estimate than including the
// z accel
float zsquared = gravity_squared - ((accel.x * accel.x) + (accel.y * accel.y));
if (zsquared < 0) {
accel_weight = 0;
} else {
if (accel.z > 0) {
accel.z = sqrt(zsquared);
} else {
accel.z = -sqrt(zsquared);
}
// this is arbitrary, and can be removed once we get
// ki and kp right
accel_weight = 0.6;
_health = constrain(_health+(0.02 * (accel_weight - .5)), 0, 1);
error = _dcm_matrix.c % accel;
// error_roll_pitch are in Accel m/s^2 units
// Limit max error_roll_pitch to limit max omega_P and omega_I
error_norm = error.length();
if (error_norm > 2) {
error *= (2 / error_norm);
}
_omega_P = error * (_kp_roll_pitch * accel_weight);
_omega_I += error * (_ki_roll_pitch * accel_weight);
}
// these sums support the reporting of the DCM state via MAVLink
_accel_weight_sum += accel_weight;
_accel_weight_count++;
_error_rp_sum += error_norm;
_error_rp_count++;
//*****YAW***************
if (_compass && _compass->use_for_yaw()) {
if (_have_initial_yaw) {
// Equation 23, Calculating YAW error
// We make the gyro YAW drift correction based
// on compass magnetic heading
error_course = (_dcm_matrix.a.x * _compass->heading_y) - (_dcm_matrix.b.x * _compass->heading_x);
} else {
// this is our first estimate of the yaw,
// construct a DCM matrix based on the current
// roll/pitch and the compass heading, but
// first ensure the compass heading has been
// calculated
_compass->calculate(_dcm_matrix);
// now construct a new DCM matrix
_compass->null_offsets_disable();
rotation_matrix_from_euler(_dcm_matrix, roll, pitch, _compass->heading);
_compass->null_offsets_enable();
_have_initial_yaw = true;
}
} else if (_gps && _gps->status() == GPS::GPS_OK) {
// Use GPS Ground course to correct yaw gyro drift
if (_gps->ground_speed >= GPS_SPEED_MIN) {
if (_have_initial_yaw) {
float course_over_ground_x = cos(ToRad(_gps->ground_course/100.0));
float course_over_ground_y = sin(ToRad(_gps->ground_course/100.0));
// Equation 23, Calculating YAW error
error_course = (_dcm_matrix.a.x * course_over_ground_y) - (_dcm_matrix.b.x * course_over_ground_x);
} else {
// when we first start moving, set the
// DCM matrix to the current
// roll/pitch values, but with yaw
// from the GPS
if (_compass) {
_compass->null_offsets_disable();
}
rotation_matrix_from_euler(_dcm_matrix, roll, pitch, ToRad(_gps->ground_course));
if (_compass) {
_compass->null_offsets_enable();
}
_have_initial_yaw = true;
error_course = 0;
}
} else if (_gps->ground_speed >= GPS_SPEED_RESET) {
// we are not going fast enough to use GPS for
// course correction, but we won't reset
// _have_initial_yaw yet, instead we just let
// the gyro handle yaw
error_course = 0;
} else {
// we are moving very slowly. Reset
// _have_initial_yaw and adjust our heading
// rapidly next time we get a good GPS ground
// speed
error_course = 0;
_have_initial_yaw = false;
}
}
error = _dcm_matrix.c * error_course; // Equation 24, Applys the yaw correction to the XYZ rotation of the aircraft, depeding the position.
_omega_P += error * _kp_yaw; // Adding yaw correction to proportional correction vector.
_omega_I += error * _ki_yaw; // adding yaw correction to integrator correction vector.
// Here we will place a limit on the integrator so that the integrator cannot ever exceed ~30 degrees/second
integrator_magnitude = _omega_I.length();
if (integrator_magnitude > radians(30)) {
_omega_I *= (radians(30) / integrator_magnitude);
}
_error_yaw_sum += error_course;
_error_yaw_count++;
//Serial.print("*");
}
/**************************************************/
void
AP_DCM::euler_angles(void)
{
check_matrix();
calculate_euler_angles(_dcm_matrix, &roll, &pitch, &yaw);
roll_sensor = degrees(roll) * 100;
pitch_sensor = degrees(pitch) * 100;
yaw_sensor = degrees(yaw) * 100;
if (yaw_sensor < 0)
yaw_sensor += 36000;
}
void
AP_DCM::euler_rp(void)
{
check_matrix();
calculate_euler_angles(_dcm_matrix, &roll, &pitch, NULL);
roll_sensor = roll * DEGX100; //degrees(roll) * 100;
pitch_sensor = pitch * DEGX100; //degrees(pitch) * 100;
}
void
AP_DCM::euler_yaw(void)
{
calculate_euler_angles(_dcm_matrix, NULL, NULL, &yaw);
yaw_sensor = yaw * DEGX100; //degrees(yaw) * 100;
if (yaw_sensor < 0)
yaw_sensor += 36000;
}
/* reporting of DCM state for MAVLink */
// average accel_weight since last call
float AP_DCM::get_accel_weight(void)
{
float ret;
if (_accel_weight_count == 0) {
return 0;
}
ret = _accel_weight_sum / _accel_weight_count;
_accel_weight_sum = 0;
_accel_weight_count = 0;
return ret;
}
// average renorm_val since last call
float AP_DCM::get_renorm_val(void)
{
float ret;
if (_renorm_val_count == 0) {
return 0;
}
ret = _renorm_val_sum / _renorm_val_count;
_renorm_val_sum = 0;
_renorm_val_count = 0;
return ret;
}
// average error_roll_pitch since last call
float AP_DCM::get_error_rp(void)
{
float ret;
if (_error_rp_count == 0) {
return 0;
}
ret = _error_rp_sum / _error_rp_count;
_error_rp_sum = 0;
_error_rp_count = 0;
return ret;
}
// average error_yaw since last call
float AP_DCM::get_error_yaw(void)
{
float ret;
if (_error_yaw_count == 0) {
return 0;
}
ret = _error_yaw_sum / _error_yaw_count;
_error_yaw_sum = 0;
_error_yaw_count = 0;
return ret;
}