ardupilot/libraries/AP_Proximity/AP_Proximity_MAV.cpp

240 lines
9.9 KiB
C++
Raw Normal View History

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <AP_HAL/AP_HAL.h>
#include "AP_Proximity_MAV.h"
#include <ctype.h>
#include <stdio.h>
extern const AP_HAL::HAL& hal;
#define PROXIMITY_MAV_TIMEOUT_MS 500 // distance messages must arrive within this many milliseconds
#define PROXIMITY_3D_MSG_TIMEOUT_MS 50 // boundary will be reset if OBSTACLE_DISTANCE_3D message does not arrive within this many milliseconds
// update the state of the sensor
void AP_Proximity_MAV::update(void)
{
// check for timeout and set health status
if ((_last_update_ms == 0 || (AP_HAL::millis() - _last_update_ms > PROXIMITY_MAV_TIMEOUT_MS)) &&
(_last_upward_update_ms == 0 || (AP_HAL::millis() - _last_upward_update_ms > PROXIMITY_MAV_TIMEOUT_MS))) {
set_status(AP_Proximity::Status::NoData);
} else {
set_status(AP_Proximity::Status::Good);
}
}
// get distance upwards in meters. returns true on success
bool AP_Proximity_MAV::get_upward_distance(float &distance) const
{
if ((_last_upward_update_ms != 0) && (AP_HAL::millis() - _last_upward_update_ms <= PROXIMITY_MAV_TIMEOUT_MS)) {
distance = _distance_upward;
return true;
}
return false;
}
// handle mavlink DISTANCE_SENSOR messages
void AP_Proximity_MAV::handle_msg(const mavlink_message_t &msg)
{
if (msg.msgid == MAVLINK_MSG_ID_DISTANCE_SENSOR) {
mavlink_distance_sensor_t packet;
mavlink_msg_distance_sensor_decode(&msg, &packet);
// store distance to appropriate sector based on orientation field
if (packet.orientation <= MAV_SENSOR_ROTATION_YAW_315) {
const uint8_t sector = packet.orientation;
// create a boundary location object based on this sector
const boundary_location bnd_loc{sector};
// store in meters
const uint16_t distance = packet.current_distance * 0.01f;
_distance_min = packet.min_distance * 0.01f;
_distance_max = packet.max_distance * 0.01f;
// reset data on this sector, to be filled with new data
boundary.reset_sector(bnd_loc);
if (distance <= _distance_max && distance >= _distance_max) {
boundary.set_attributes(bnd_loc, sector * 45, distance);
// update OA database
database_push(boundary.get_angle(bnd_loc), distance);
}
_last_update_ms = AP_HAL::millis();
// update boundary used for Obstacle Avoidance
boundary.update_boundary(bnd_loc);
}
// store upward distance
if (packet.orientation == MAV_SENSOR_ROTATION_PITCH_90) {
_distance_upward = packet.current_distance * 0.01f;
_last_upward_update_ms = AP_HAL::millis();
}
return;
}
if (msg.msgid == MAVLINK_MSG_ID_OBSTACLE_DISTANCE) {
mavlink_obstacle_distance_t packet;
mavlink_msg_obstacle_distance_decode(&msg, &packet);
// check increment (message's sector width)
float increment;
if (!is_zero(packet.increment_f)) {
// use increment float
increment = packet.increment_f;
} else if (packet.increment != 0) {
// use increment uint8_t
increment = packet.increment;
} else {
// invalid increment
return;
}
const uint8_t total_distances = MIN(((360.0f / fabsf(increment)) + 0.5f), MAVLINK_MSG_OBSTACLE_DISTANCE_FIELD_DISTANCES_LEN); // usually 72
// set distance min and max
_distance_min = packet.min_distance * 0.01f;
_distance_max = packet.max_distance * 0.01f;
_last_update_ms = AP_HAL::millis();
// get user configured yaw correction from front end
const float param_yaw_offset = constrain_float(frontend.get_yaw_correction(state.instance), -360.0f, +360.0f);
const float yaw_correction = wrap_360(param_yaw_offset + packet.angle_offset);
if (frontend.get_orientation(state.instance) != 0) {
increment *= -1;
}
2020-06-08 04:01:01 -03:00
Vector3f current_pos;
Matrix3f body_to_ned;
const bool database_ready = database_prepare_for_push(current_pos, body_to_ned);
// initialise updated array and proximity sector angles (to closest object) and distances
bool sector_updated[PROXIMITY_NUM_SECTORS];
memset(sector_updated, 0, sizeof(sector_updated));
boundary.reset_all_horizontal_sectors();
// iterate over message's sectors
for (uint8_t j = 0; j < total_distances; j++) {
const uint16_t distance_cm = packet.distances[j];
if (distance_cm == 0 ||
distance_cm == 65535 ||
distance_cm < packet.min_distance ||
distance_cm > packet.max_distance)
{
// sanity check failed, ignore this distance value
continue;
}
const float packet_distance_m = distance_cm * 0.01f;
const float mid_angle = wrap_360((float)j * increment + yaw_correction);
// iterate over proximity sectors
for (uint8_t i = 0; i < PROXIMITY_NUM_SECTORS; i++) {
// update distance array sector with shortest distance from message
const float angle_diff = wrap_180(boundary._sector_middle_deg[i] - mid_angle);
if (fabsf(angle_diff) > PROXIMITY_SECTOR_WIDTH_DEG*0.5f) {
// not even in this sector
continue;
}
if (is_equal(angle_diff, -PROXIMITY_SECTOR_WIDTH_DEG*0.5f)) {
// on the upper boundary is *out* to avoid
// ambiguity. The distance is considered to be in
// the next sector. We should never be within an
// epsilon of the boundary, so is_equal should be
// safe.
continue;
}
if (packet_distance_m >= boundary.get_distance(i)) {
// this is no closer than a previous distance
// found from the packet
continue;
}
// this is the shortest distance we've found in the packet so far
// create a location packet
const boundary_location bnd_loc{i};
boundary.set_attributes(bnd_loc, mid_angle, packet_distance_m);
sector_updated[i] = true;
}
// update Object Avoidance database with Earth-frame point
if (database_ready) {
2020-06-08 04:01:01 -03:00
database_push(mid_angle, packet_distance_m, _last_update_ms, current_pos, body_to_ned);
}
}
// update proximity sectors validity and boundary point
for (uint8_t i = 0; i < PROXIMITY_NUM_SECTORS; i++) {
if (sector_updated[i]) {
const boundary_location bnd_loc{i};
boundary.update_boundary(bnd_loc);
}
}
}
if (msg.msgid == MAVLINK_MSG_ID_OBSTACLE_DISTANCE_3D) {
mavlink_obstacle_distance_3d_t packet;
mavlink_msg_obstacle_distance_3d_decode(&msg, &packet);
const uint32_t previous_sys_time = _last_update_ms;
_last_update_ms = AP_HAL::millis();
// time_diff will check if the new message arrived significantly later than the last message
const uint32_t time_diff = _last_update_ms - previous_sys_time;
const uint32_t previous_msg_timestamp = _last_3d_msg_update_ms;
_last_3d_msg_update_ms = packet.time_boot_ms;
bool clear_fence = false;
// we will add on to the last fence if the time stamp is the same
// provided we got the new obstacle in less than PROXIMITY_3D_MSG_TIMEOUT_MS
if ((previous_msg_timestamp != _last_3d_msg_update_ms) || (time_diff > PROXIMITY_3D_MSG_TIMEOUT_MS)) {
clear_fence = true;
}
_distance_min = packet.min_distance;
_distance_max = packet.max_distance;
Vector3f current_pos;
Matrix3f body_to_ned;
const bool database_ready = database_prepare_for_push(current_pos, body_to_ned);
if (clear_fence) {
// cleared fence back to defaults since we have a new timestamp
boundary.reset_all_sectors_and_stacks();
}
const Vector3f obstacle(packet.x, packet.y, packet.z);
if (obstacle.length() < _distance_min || obstacle.length() > _distance_max || obstacle.is_zero()) {
// message isn't healthy
return;
}
// extract yaw and pitch from Obstacle Vector
const float yaw = wrap_360(degrees(atan2f(obstacle.y, obstacle.x)));
const float pitch = wrap_180(degrees(M_PI_2 - atan2f(norm(obstacle.x, obstacle.y), obstacle.z)));
// allot them correct stack and sector based on calculated pitch and yaw
const boundary_location bnd_loc = boundary.get_sector(yaw, pitch);
if (boundary.get_distance(bnd_loc) < obstacle.length()) {
// we already have a shorter distance in this stack and sector
return;
}
boundary.set_attributes(bnd_loc, yaw, pitch, obstacle.length());
boundary.update_boundary(bnd_loc);
if (database_ready) {
database_push(yaw, obstacle.length(),_last_update_ms, current_pos, body_to_ned, pitch);
}
}
}