ardupilot/libraries/RC_Channel/RC_Channel.cpp

286 lines
6.5 KiB
C++
Raw Normal View History

/*
RC_Channel.cpp - Radio library for Arduino
Code by Jason Short. DIYDrones.com
This library is free software; you can redistribute it and / or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
*/
#include <math.h>
#include <avr/eeprom.h>
#include <APM_RC.h>
#include "WProgram.h"
#include "RC_Channel.h"
#define RC_CHANNEL_ANGLE 0
#define RC_CHANNEL_RANGE 1
#define RC_CHANNEL_ANGLE_RAW 2
// setup the control preferences
void
RC_Channel::set_range(int low, int high)
{
_type = RC_CHANNEL_RANGE;
_high = high;
_low = low;
}
void
RC_Channel::set_angle(int angle)
{
_type = RC_CHANNEL_ANGLE;
_high = angle;
}
void
RC_Channel::set_reverse(bool reverse)
{
if (reverse) _reverse = -1;
else _reverse = 1;
}
bool
RC_Channel::get_reverse(void)
{
if (_reverse==-1) return 1;
else return 0;
}
void
RC_Channel::set_filter(bool filter)
{
_filter = filter;
}
void
RC_Channel::set_type(uint8_t t)
{
_type = t;
//Serial.print("type1: ");
//Serial.println(t,DEC);
}
// call after first read
void
RC_Channel::trim()
{
radio_trim = radio_in;
}
// read input from APM_RC - create a control_in value
void
RC_Channel::set_pwm(int pwm)
{
//Serial.print(pwm,DEC);
if(_filter){
if(radio_in == 0)
radio_in = pwm;
else
radio_in = (pwm + radio_in) >> 1; // Small filtering
}else{
radio_in = pwm;
}
if(_type == RC_CHANNEL_RANGE){
//Serial.print("range ");
control_in = pwm_to_range();
control_in = (control_in < dead_zone) ? 0 : control_in;
//if (fabs(scale_output) > 0){
// control_in *= scale_output;
//}
}else{
control_in = pwm_to_angle();
control_in = (abs(control_in) < dead_zone) ? 0 : control_in;
//if (fabs(scale_output) > 0){
// control_in *= scale_output;
//}
}
}
int
RC_Channel::control_mix(float value)
{
return (1 - abs(control_in / _high)) * value + control_in;
}
// are we below a threshold?
bool
RC_Channel::get_failsafe(void)
{
return (radio_in < (radio_min - 50));
}
// returns just the PWM without the offset from radio_min
void
RC_Channel::calc_pwm(void)
{
if(_type == RC_CHANNEL_RANGE){
pwm_out = range_to_pwm();
radio_out = pwm_out + radio_min;
}else if(_type == RC_CHANNEL_ANGLE_RAW){
pwm_out = (float)servo_out * .1;
radio_out = (pwm_out * _reverse) + 1500;
}else{
pwm_out = angle_to_pwm();
radio_out = pwm_out + radio_trim;
}
radio_out = constrain(radio_out, radio_min.get(), radio_max.get());
}
// ------------------------------------------
void
RC_Channel::load_eeprom(void)
{
_group.load();
}
void
RC_Channel::save_eeprom(void)
{
_group.save();
}
// ------------------------------------------
void
RC_Channel::zero_min_max()
{
radio_min = radio_max = radio_in;
}
void
RC_Channel::update_min_max()
{
radio_min = min(radio_min.get(), radio_in);
radio_max = max(radio_max.get(), radio_in);
}
// ------------------------------------------
int16_t
RC_Channel::pwm_to_angle()
{
if(radio_in > radio_trim)
return _reverse * ((long)_high * (long)(radio_in - radio_trim)) / (long)(radio_max - radio_trim);
else
return _reverse * ((long)_high * (long)(radio_in - radio_trim)) / (long)(radio_trim - radio_min);
}
int16_t
RC_Channel::angle_to_pwm()
{
if((servo_out * _reverse) > 0)
return _reverse * ((long)servo_out * (long)(radio_max - radio_trim)) / (long)_high;
else
return _reverse * ((long)servo_out * (long)(radio_trim - radio_min)) / (long)_high;
}
// ------------------------------------------
int16_t
RC_Channel::pwm_to_range()
{
//return (_low + ((_high - _low) * ((float)(radio_in - radio_min) / (float)(radio_max - radio_min))));
return (_low + ((long)(_high - _low) * (long)(radio_in - radio_min)) / (long)(radio_max - radio_min));
}
int16_t
RC_Channel::range_to_pwm()
{
//return (((float)(servo_out - _low) / (float)(_high - _low)) * (float)(radio_max - radio_min));
return ((long)(servo_out - _low) * (long)(radio_max - radio_min)) / (long)(_high - _low);
}
// ------------------------------------------
float
RC_Channel::norm_input()
{
if(radio_in < radio_trim)
return _reverse * (float)(radio_in - radio_trim) / (float)(radio_trim - radio_min);
else
return _reverse * (float)(radio_in - radio_trim) / (float)(radio_max - radio_trim);
}
float
RC_Channel::norm_output()
{
if(radio_out < radio_trim)
return (float)(radio_out - radio_trim) / (float)(radio_trim - radio_min);
else
return (float)(radio_out - radio_trim) / (float)(radio_max - radio_trim);
}
int16_t
RC_Channel_aux::closest_limit(int16_t angle)
{
// Change scaling to 0.1 degrees in order to avoid overflows in the angle arithmetic
int16_t min = angle_min / 10;
int16_t max = angle_max / 10;
// Make sure the angle lies in the interval [-180 .. 180[ degrees
while (angle < -1800) angle += 3600;
while (angle >= 1800) angle -= 3600;
// Make sure the angle limits lie in the interval [-180 .. 180[ degrees
while (min < -1800) min += 3600;
while (min >= 1800) min -= 3600;
while (max < -1800) max += 3600;
while (max >= 1800) max -= 3600;
set_range(min, max);
// If the angle is outside servo limits, saturate the angle to the closest limit
// On a circle the closest angular position must be carefully calculated to account for wrap-around
if ((angle < min) && (angle > max)){
// angle error if min limit is used
int16_t err_min = min - angle + (angle<min?0:3600); // add 360 degrees if on the "wrong side"
// angle error if max limit is used
int16_t err_max = angle - max + (angle>max?0:3600); // add 360 degrees if on the "wrong side"
angle = err_min<err_max?min:max;
}
servo_out = angle;
// convert angle to PWM using a linear transformation (ignores trimming because the camera limits might not be symmetric)
calc_pwm();
return angle;
}
// map a function to a servo channel and output it
void
RC_Channel_aux::output_ch(unsigned char ch_nr)
{
switch(function)
{
case k_none: // disabled
return;
break;
case k_mount_yaw: // mount yaw (pan)
case k_mount_pitch: // mount pitch (tilt)
case k_mount_roll: // mount roll
case k_cam_trigger: // camera trigger
case k_cam_open: // camera open
case k_flap: // flaps
case k_flap_auto: // flaps automated
case k_aileron: // aileron
case k_flaperon: // flaperon (flaps and aileron combined, needs two independent servos one for each wing)
case k_egg_drop: // egg drop
case k_nr_aux_servo_functions: // dummy, just to avoid a compiler warning
break;
case k_manual: // manual
radio_out = radio_in;
break;
}
APM_RC.OutputCh(ch_nr, radio_out);
}