ardupilot/ArduCopter/heli.cpp

200 lines
7.5 KiB
C++
Raw Normal View History

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include "Copter.h"
// Traditional helicopter variables and functions
#if FRAME_CONFIG == HELI_FRAME
#ifndef HELI_DYNAMIC_FLIGHT_SPEED_MIN
#define HELI_DYNAMIC_FLIGHT_SPEED_MIN 500 // we are in "dynamic flight" when the speed is over 1m/s for 2 seconds
#endif
// counter to control dynamic flight profile
static int8_t heli_dynamic_flight_counter;
// heli_init - perform any special initialisation required for the tradheli
void Copter::heli_init()
{
// helicopters are always using motor interlock
set_using_interlock(true);
}
// get_pilot_desired_collective - converts pilot input (from 0 ~ 1000) to a value that can be fed into the channel_throttle->servo_out function
int16_t Copter::get_pilot_desired_collective(int16_t control_in)
{
// return immediately if reduce collective range for manual flight has not been configured
if (g.heli_stab_col_min == 0 && g.heli_stab_col_max == 1000) {
return control_in;
}
// scale pilot input to reduced collective range
float scalar = ((float)(g.heli_stab_col_max - g.heli_stab_col_min))/1000.0f;
int16_t collective_out = g.heli_stab_col_min + control_in * scalar;
collective_out = constrain_int16(collective_out, 0, 1000);
return collective_out;
}
// heli_check_dynamic_flight - updates the dynamic_flight flag based on our horizontal velocity
// should be called at 50hz
void Copter::check_dynamic_flight(void)
{
if (!motors.armed() || !motors.rotor_runup_complete() ||
control_mode == LAND || (control_mode==RTL && rtl_state == RTL_Land) || (control_mode == AUTO && auto_mode == Auto_Land)) {
heli_dynamic_flight_counter = 0;
heli_flags.dynamic_flight = false;
return;
}
bool moving = false;
// with GPS lock use inertial nav to determine if we are moving
if (position_ok()) {
// get horizontal velocity
float velocity = inertial_nav.get_velocity_xy();
moving = (velocity >= HELI_DYNAMIC_FLIGHT_SPEED_MIN);
}else{
// with no GPS lock base it on throttle and forward lean angle
moving = (motors.get_throttle() > 800.0f || ahrs.pitch_sensor < -1500);
}
if (moving) {
// if moving for 2 seconds, set the dynamic flight flag
if (!heli_flags.dynamic_flight) {
heli_dynamic_flight_counter++;
if (heli_dynamic_flight_counter >= 100) {
heli_flags.dynamic_flight = true;
heli_dynamic_flight_counter = 100;
}
}
}else{
// if not moving for 2 seconds, clear the dynamic flight flag
if (heli_flags.dynamic_flight) {
if (heli_dynamic_flight_counter > 0) {
heli_dynamic_flight_counter--;
}else{
heli_flags.dynamic_flight = false;
}
}
}
}
// update_heli_control_dynamics - pushes several important factors up into AP_MotorsHeli.
// should be run between the rate controller and the servo updates.
void Copter::update_heli_control_dynamics(void)
{
// Use Leaky_I if we are not moving fast
attitude_control.use_leaky_i(!heli_flags.dynamic_flight);
// To-Do: Update dynamic phase angle of swashplate
}
// heli_update_landing_swash - sets swash plate flag so higher minimum is used when landed or landing
// should be called soon after update_land_detector in main code
void Copter::heli_update_landing_swash()
{
2014-02-03 08:06:34 -04:00
switch(control_mode) {
case ACRO:
case STABILIZE:
case DRIFT:
case SPORT:
// manual modes always uses full swash range
motors.set_collective_for_landing(false);
break;
2014-02-03 08:06:34 -04:00
case LAND:
// landing always uses limit swash range
motors.set_collective_for_landing(true);
break;
2014-02-03 08:06:34 -04:00
case RTL:
if (rtl_state == RTL_Land) {
2014-02-03 08:06:34 -04:00
motors.set_collective_for_landing(true);
}else{
motors.set_collective_for_landing(!heli_flags.dynamic_flight || ap.land_complete || !ap.auto_armed);
}
break;
case AUTO:
if (auto_mode == Auto_Land) {
motors.set_collective_for_landing(true);
}else{
motors.set_collective_for_landing(!heli_flags.dynamic_flight || ap.land_complete || !ap.auto_armed);
}
break;
default:
// auto and hold use limited swash when landed
motors.set_collective_for_landing(!heli_flags.dynamic_flight || ap.land_complete || !ap.auto_armed);
break;
}
}
// heli_update_rotor_speed_targets - reads pilot input and passes new rotor speed targets to heli motors object
void Copter::heli_update_rotor_speed_targets()
{
static bool rotor_runup_complete_last = false;
// get rotor control method
uint8_t rsc_control_mode = motors.get_rsc_mode();
rsc_control_deglitched = rotor_speed_deglitch_filter.apply(g.rc_8.control_in);
if (motors.armed()) {
switch (rsc_control_mode) {
case AP_MOTORS_HELI_RSC_MODE_CH8_PASSTHROUGH:
// pass through pilot desired rotor speed if control input is higher than 10, creating a deadband at the bottom
if (rsc_control_deglitched > 10) {
motors.set_interlock(true);
motors.set_desired_rotor_speed(rsc_control_deglitched);
} else {
motors.set_interlock(false);
motors.set_desired_rotor_speed(0);
}
break;
case AP_MOTORS_HELI_RSC_MODE_SETPOINT:
// pass setpoint through as desired rotor speed
if (rsc_control_deglitched > 0) {
motors.set_interlock(true);
motors.set_desired_rotor_speed(motors.get_rsc_setpoint());
}else{
motors.set_interlock(false);
motors.set_desired_rotor_speed(0);
}
break;
case AP_MOTORS_HELI_RSC_MODE_THROTTLE_CURVE:
// pass setpoint through as desired rotor speed, this is almost pointless as the Setpoint serves no function in this mode
// other than being used to create a crude estimate of rotor speed
if (rsc_control_deglitched > 0) {
motors.set_interlock(true);
motors.set_desired_rotor_speed(motors.get_rsc_setpoint());
}else{
motors.set_interlock(false);
motors.set_desired_rotor_speed(0);
}
break;
}
} else {
// if disarmed, force desired_rotor_speed to Zero
motors.set_interlock(false);
motors.set_desired_rotor_speed(0);
}
// when rotor_runup_complete changes to true, log event
if (!rotor_runup_complete_last && motors.rotor_runup_complete()){
Log_Write_Event(DATA_ROTOR_RUNUP_COMPLETE);
} else if (rotor_runup_complete_last && !motors.rotor_runup_complete()){
Log_Write_Event(DATA_ROTOR_SPEED_BELOW_CRITICAL);
}
rotor_runup_complete_last = motors.rotor_runup_complete();
}
// heli_radio_passthrough send RC inputs direct into motors library for use during manual passthrough for helicopter setup
void Copter::heli_radio_passthrough()
{
motors.set_radio_passthrough(channel_roll->control_in, channel_pitch->control_in, channel_throttle->control_in, channel_yaw->control_in);
}
#endif // FRAME_CONFIG == HELI_FRAME