2014-01-30 17:47:33 -04:00
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
2014-01-03 03:52:37 -04:00
21 state EKF based on https : //github.com/priseborough/InertialNav
2014-01-30 17:47:33 -04:00
Converted from Matlab to C + + by Paul Riseborough
This program is free software : you can redistribute it and / or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation , either version 3 of the License , or
( at your option ) any later version .
This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY ; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
GNU General Public License for more details .
You should have received a copy of the GNU General Public License
along with this program . If not , see < http : //www.gnu.org/licenses/>.
*/
# ifndef AP_NavEKF
# define AP_NavEKF
# include <AP_Math.h>
# include <AP_InertialSensor.h>
# include <AP_Baro.h>
# include <AP_Airspeed.h>
# include <AP_Compass.h>
2014-01-30 18:16:58 -04:00
# include <AP_Param.h>
2013-12-30 06:27:50 -04:00
// #define MATH_CHECK_INDEXES 1
2013-12-29 22:25:02 -04:00
# include <vectorN.h>
2014-01-30 17:47:33 -04:00
2013-12-30 06:41:28 -04:00
# if CONFIG_HAL_BOARD == HAL_BOARD_PX4
# include <systemlib/perf_counter.h>
# endif
2013-12-30 06:27:50 -04:00
2014-01-01 21:15:22 -04:00
class AP_AHRS ;
2014-01-30 17:47:33 -04:00
class NavEKF
{
public :
2014-01-03 00:37:19 -04:00
typedef float ftype ;
2013-12-30 06:27:50 -04:00
# if MATH_CHECK_INDEXES
2014-01-03 00:37:19 -04:00
typedef VectorN < ftype , 2 > Vector2 ;
typedef VectorN < ftype , 3 > Vector3 ;
typedef VectorN < ftype , 6 > Vector6 ;
typedef VectorN < ftype , 8 > Vector8 ;
typedef VectorN < ftype , 11 > Vector11 ;
typedef VectorN < ftype , 13 > Vector13 ;
2014-01-03 03:52:37 -04:00
typedef VectorN < ftype , 14 > Vector14 ;
2014-01-30 18:25:40 -04:00
typedef VectorN < ftype , 15 > Vector15 ;
typedef VectorN < ftype , 22 > Vector22 ;
2014-01-03 00:37:19 -04:00
typedef VectorN < VectorN < ftype , 3 > , 3 > Matrix3 ;
2014-01-30 18:25:40 -04:00
typedef VectorN < VectorN < ftype , 22 > , 22 > Matrix22 ;
typedef VectorN < VectorN < ftype , 50 > , 22 > Matrix22_50 ;
2013-12-30 06:27:50 -04:00
# else
2014-01-03 00:37:19 -04:00
typedef ftype Vector2 [ 2 ] ;
typedef ftype Vector3 [ 3 ] ;
typedef ftype Vector6 [ 6 ] ;
typedef ftype Vector8 [ 8 ] ;
typedef ftype Vector11 [ 11 ] ;
typedef ftype Vector13 [ 13 ] ;
2014-01-03 03:52:37 -04:00
typedef ftype Vector14 [ 14 ] ;
2014-01-30 18:25:40 -04:00
typedef ftype Vector15 [ 15 ] ;
typedef ftype Vector22 [ 22 ] ;
2014-01-03 00:37:19 -04:00
typedef ftype Matrix3 [ 3 ] [ 3 ] ;
2014-01-30 18:25:40 -04:00
typedef ftype Matrix22 [ 22 ] [ 22 ] ;
typedef ftype Matrix22_50 [ 22 ] [ 50 ] ;
2013-12-30 06:27:50 -04:00
# endif
2013-12-29 22:25:02 -04:00
2014-01-03 03:52:37 -04:00
// Constructor
2014-01-01 21:15:22 -04:00
NavEKF ( const AP_AHRS * ahrs , AP_Baro & baro ) ;
2014-01-03 03:52:37 -04:00
2014-01-30 17:47:33 -04:00
// Initialise the filter states from the AHRS and magnetometer data (if present)
2014-01-20 15:52:27 -04:00
// This method can be used when the vehicle is moving
void InitialiseFilterDynamic ( void ) ;
2013-12-29 03:37:55 -04:00
2014-01-20 15:52:27 -04:00
// Initialise the states from accelerometer and magnetometer data (if present)
// This method can only be used when the vehicle is static
2014-01-30 18:25:40 -04:00
void InitialiseFilterBootstrap ( void ) ;
// inhibits position and velocity attitude corrections when set to true
// setting to true has same effect as ahrs.set_correct_centrifugal(false)
2014-01-30 18:39:11 -04:00
void SetStaticMode ( bool setting ) ;
2014-01-30 17:47:33 -04:00
// Update Filter States - this should be called whenever new IMU data is available
2013-12-29 03:37:55 -04:00
void UpdateFilter ( void ) ;
2014-01-02 01:16:16 -04:00
// return true if the filter is healthy
2014-01-03 20:16:19 -04:00
bool healthy ( void ) const ;
2014-01-02 01:16:16 -04:00
2014-01-30 18:25:40 -04:00
// return true if filter is dead-reckoning height
bool HeightDrifting ( void ) const ;
// return true if filter is dead-reckoning position
bool PositionDrifting ( void ) const ;
2013-12-29 03:37:55 -04:00
// fill in latitude, longitude and height of the reference point
2014-01-01 21:15:22 -04:00
void getRefLLH ( struct Location & loc ) const ;
2013-12-29 03:37:55 -04:00
2014-01-02 07:05:09 -04:00
// set latitude, longitude and height of the reference point
void setRefLLH ( int32_t lat , int32_t lng , int32_t alt_cm ) ;
2013-12-29 03:37:55 -04:00
// return the last calculated NED position relative to the
// reference point (m). Return false if no position is available
2014-01-01 21:15:22 -04:00
bool getPosNED ( Vector3f & pos ) const ;
2013-12-29 03:37:55 -04:00
2013-12-31 23:03:52 -04:00
// return NED velocity in m/s
2014-01-01 21:15:22 -04:00
void getVelNED ( Vector3f & vel ) const ;
2014-01-30 17:47:33 -04:00
2013-12-31 23:03:52 -04:00
// return bodyaxis gyro bias estimates in deg/hr
2014-01-01 21:15:22 -04:00
void getGyroBias ( Vector3f & gyroBias ) const ;
2013-12-31 17:54:56 -04:00
2013-12-31 23:03:52 -04:00
// return body axis accelerometer bias estimates in m/s^2
2014-01-01 21:15:22 -04:00
void getAccelBias ( Vector3f & accelBias ) const ;
2013-12-31 17:54:56 -04:00
2013-12-31 23:03:52 -04:00
// return the NED wind speed estimates in m/s
2014-01-30 18:25:40 -04:00
// positive is air moving in the direction of the corresponding axis
2014-01-01 21:15:22 -04:00
void getWind ( Vector3f & wind ) const ;
2014-01-30 18:11:54 -04:00
2013-12-31 23:03:52 -04:00
// return earth magnetic field estimates in measurement units
2014-01-01 21:15:22 -04:00
void getMagNED ( Vector3f & magNED ) const ;
2013-12-31 17:54:56 -04:00
2013-12-31 23:03:52 -04:00
// return body magnetic field estimates in measurement units
2014-01-01 21:15:22 -04:00
void getMagXYZ ( Vector3f & magXYZ ) const ;
2013-12-31 17:54:56 -04:00
2013-12-29 03:37:55 -04:00
// return the last calculated latitude, longitude and height
2014-01-01 21:15:22 -04:00
bool getLLH ( struct Location & loc ) const ;
2014-01-30 17:47:33 -04:00
2013-12-29 03:37:55 -04:00
// return the Euler roll, pitch and yaw angle in radians
2014-01-01 21:15:22 -04:00
void getEulerAngles ( Vector3f & eulers ) const ;
2014-01-30 17:47:33 -04:00
2013-12-29 03:37:55 -04:00
// get the transformation matrix from NED to XYD (body) axes
2014-01-01 21:15:22 -04:00
void getRotationNEDToBody ( Matrix3f & mat ) const ;
2014-01-30 17:47:33 -04:00
2013-12-29 03:37:55 -04:00
// get the transformation matrix from XYZ (body) to NED axes
2014-01-01 21:15:22 -04:00
void getRotationBodyToNED ( Matrix3f & mat ) const ;
2014-01-30 17:47:33 -04:00
2013-12-29 03:37:55 -04:00
// get the quaternions defining the rotation from NED to XYZ (body) axes
2014-01-01 21:15:22 -04:00
void getQuaternion ( Quaternion & quat ) const ;
2014-01-30 17:47:33 -04:00
2014-01-30 18:25:40 -04:00
// return the innovations for the NED Pos, NED Vel, XYZ Mag and Vtas measurements
void getInnovations ( Vector3f & velInnov , Vector3f & posInnov , Vector3f & magInnov , float & tasInnov ) const ;
// return the innovation variances for the NED Pos, NED Vel, XYZ Mag and Vtas measurements
void getVariances ( Vector3f & velVar , Vector3f & posVar , Vector3f & magVar , float & tasVar ) const ;
2014-01-20 01:47:56 -04:00
static const struct AP_Param : : GroupInfo var_info [ ] ;
2013-12-29 03:37:55 -04:00
private :
2014-01-01 21:15:22 -04:00
const AP_AHRS * _ahrs ;
2013-12-29 03:37:55 -04:00
AP_Baro & _baro ;
2014-01-30 17:47:33 -04:00
2014-01-29 02:58:54 -04:00
// update the quaternion, velocity and position states using IMU measurements
2013-12-29 03:37:55 -04:00
void UpdateStrapdownEquationsNED ( ) ;
2014-01-30 17:47:33 -04:00
2014-01-29 02:58:54 -04:00
// calculate the predicted state covariance matrix
2013-12-29 03:37:55 -04:00
void CovariancePrediction ( ) ;
2014-01-03 03:52:37 -04:00
2014-01-29 02:58:54 -04:00
// force symmetry on the state covariance matrix
2014-01-03 15:59:47 -04:00
void ForceSymmetry ( ) ;
2014-01-29 02:58:54 -04:00
// constrain variances (diagonal terms) on the state covariance matrix
2014-01-03 15:59:47 -04:00
void ConstrainVariances ( ) ;
2014-01-02 22:10:38 -04:00
2014-01-29 02:58:54 -04:00
// constrain states
2014-01-30 18:25:40 -04:00
void ConstrainStates ( ) ;
2014-01-29 02:58:54 -04:00
// fuse selected position, velocity and height measurements
2013-12-29 03:37:55 -04:00
void FuseVelPosNED ( ) ;
2014-01-03 03:52:37 -04:00
2014-01-29 02:58:54 -04:00
// fuse magnetometer measurements
2013-12-29 03:37:55 -04:00
void FuseMagnetometer ( ) ;
2014-01-03 03:52:37 -04:00
2014-01-29 02:58:54 -04:00
// fuse true airspeed measurements
2013-12-29 03:37:55 -04:00
void FuseAirspeed ( ) ;
2014-01-30 17:47:33 -04:00
2014-01-29 02:58:54 -04:00
// zero specified range of rows in the state covariance matrix
2014-01-30 18:25:40 -04:00
void zeroRows ( Matrix22 & covMat , uint8_t first , uint8_t last ) ;
2014-01-30 17:47:33 -04:00
2014-01-29 02:58:54 -04:00
// zero specified range of columns in the state covariance matrix
2014-01-30 18:25:40 -04:00
void zeroCols ( Matrix22 & covMat , uint8_t first , uint8_t last ) ;
2014-01-30 17:47:33 -04:00
2014-01-29 02:58:54 -04:00
// normalise the quaternion states
2014-01-01 21:15:22 -04:00
void quatNorm ( Quaternion & quatOut , const Quaternion & quatIn ) const ;
2014-01-30 17:47:33 -04:00
2013-12-29 03:37:55 -04:00
// store states along with system time stamp in msces
void StoreStates ( void ) ;
2014-01-30 17:47:33 -04:00
2013-12-29 03:37:55 -04:00
// recall state vector stored at closest time to the one specified by msec
2014-01-30 18:25:40 -04:00
void RecallStates ( Vector22 & statesForFusion , uint32_t msec ) ;
2014-01-30 17:47:33 -04:00
2014-01-29 02:58:54 -04:00
// calculate nav to body quaternions from body to nav rotation matrix
2014-01-01 21:15:22 -04:00
void quat2Tbn ( Matrix3f & Tbn , const Quaternion & quat ) const ;
2014-01-30 17:47:33 -04:00
2014-01-29 02:58:54 -04:00
// calculate the earth spin vector in NED axes
2014-01-02 07:05:09 -04:00
void calcEarthRateNED ( Vector3f & omega , int32_t latitude ) const ;
2014-01-30 17:47:33 -04:00
2014-01-29 02:58:54 -04:00
// calculate a NED velocity vector from GPS speed, course and down velocity
2014-01-01 21:15:22 -04:00
void calcvelNED ( Vector3f & velNED , float gpsCourse , float gpsGndSpd , float gpsVelD ) const ;
2014-01-30 17:47:33 -04:00
2014-01-29 02:58:54 -04:00
// calculate from height, airspeed and ground speed whether the flight vehicle is on the ground or flying
2013-12-29 03:37:55 -04:00
void OnGroundCheck ( ) ;
2014-01-30 17:47:33 -04:00
2014-01-29 02:58:54 -04:00
// initialise the covariance matrix
2014-01-30 18:25:40 -04:00
void CovarianceInit ( float roll , float pitch , float yaw ) ;
2014-01-30 17:47:33 -04:00
2014-01-29 02:58:54 -04:00
// update IMU delta angle and delta velocity measurements
2013-12-29 03:37:55 -04:00
void readIMUData ( ) ;
2014-01-30 17:47:33 -04:00
2014-01-29 02:58:54 -04:00
// check for new valid GPS data and update stored measurement if available
2013-12-29 03:37:55 -04:00
void readGpsData ( ) ;
2014-01-30 17:47:33 -04:00
2014-01-29 02:58:54 -04:00
// check for new altitude measurement data and update stored measurement if available
2013-12-29 03:37:55 -04:00
void readHgtData ( ) ;
2014-01-30 17:47:33 -04:00
2014-01-29 02:58:54 -04:00
// check for new magnetometer data and update store measurements if available
2013-12-29 03:37:55 -04:00
void readMagData ( ) ;
2014-01-30 17:47:33 -04:00
2014-01-29 02:58:54 -04:00
// check for new airspeed data and update stored measurements if available
2013-12-29 03:37:55 -04:00
void readAirSpdData ( ) ;
2014-01-30 17:47:33 -04:00
2014-01-29 02:58:54 -04:00
// determine when to perform fusion of GPS position and velocity measurements
2013-12-29 03:37:55 -04:00
void SelectVelPosFusion ( ) ;
2014-01-03 03:52:37 -04:00
2014-01-29 02:58:54 -04:00
// determine when to perform fusion of height measurements
2013-12-29 03:37:55 -04:00
void SelectHgtFusion ( ) ;
2014-01-29 02:58:54 -04:00
// determine when to perform fusion of true airspeed measurements
2013-12-29 03:37:55 -04:00
void SelectTasFusion ( ) ;
2014-01-29 02:58:54 -04:00
// determine when to perform fusion of magnetometer measurements
2013-12-29 03:37:55 -04:00
void SelectMagFusion ( ) ;
2014-01-29 02:58:54 -04:00
// force alignment of the yaw angle using GPS velocity data
2014-01-30 18:25:40 -04:00
void ForceYawAlignment ( ) ;
2014-01-29 02:58:54 -04:00
// zero stored variables
2014-01-30 18:25:40 -04:00
void ZeroVariables ( ) ;
2013-12-29 03:37:55 -04:00
2014-01-29 02:58:54 -04:00
// reset the horizontal position states uing the last GPS measurement
2014-01-20 15:41:41 -04:00
void ResetPosition ( void ) ;
2014-01-29 02:58:54 -04:00
// reset velocity states using the last GPS measurement
2014-01-20 15:41:41 -04:00
void ResetVelocity ( void ) ;
2014-01-29 02:58:54 -04:00
// reset the vertical position state using the last height measurement
2014-01-20 15:41:41 -04:00
void ResetHeight ( void ) ;
2014-01-20 06:27:50 -04:00
private :
// EKF Mavlink Tuneable Parameters
AP_Float _gpsHorizVelNoise ; // GPS horizontal velocity measurement noise : m/s
AP_Float _gpsVertVelNoise ; // GPS vertical velocity measurement noise : m/s
AP_Float _gpsHorizPosNoise ; // GPS horizontal position measurement noise m
AP_Float _baroAltNoise ; // Baro height measurement noise : m^2
AP_Float _magNoise ; // magnetometer measurement noise : gauss
AP_Float _easNoise ; // equivalent airspeed measurement noise : m/s
AP_Float _windVelProcessNoise ; // wind velocity state process noise : m/s^2
AP_Float _wndVarHgtRateScale ; // scale factor applied to wind process noise due to height rate
AP_Float _magEarthProcessNoise ; // earth magnetic field process noise : gauss/sec
AP_Float _magBodyProcessNoise ; // earth magnetic field process noise : gauss/sec
AP_Float _gyrNoise ; // gyro process noise : rad/s
AP_Float _accNoise ; // accelerometer process noise : m/s^2
AP_Float _gyroBiasProcessNoise ; // gyro bias state process noise : rad/s
AP_Float _accelBiasProcessNoise ; // accel bias state process noise : m/s^2
AP_Int16 _msecVelDelay ; // effective average delay of GPS velocity measurements rel to IMU (msec)
AP_Int16 _msecPosDelay ; // effective average delay of GPS position measurements rel to (msec)
AP_Int8 _fusionModeGPS ; // 0 = use 3D velocity, 1 = use 2D velocity, 2 = use no velocity
AP_Int8 _gpsVelInnovGate ; // Number of standard deviations applied to GPS velocity innovation consistency check
AP_Int8 _gpsPosInnovGate ; // Number of standard deviations applied to GPS position innovation consistency check
AP_Int8 _hgtInnovGate ; // Number of standard deviations applied to height innovation consistency check
AP_Int8 _magInnovGate ; // Number of standard deviations applied to magnetometer innovation consistency check
AP_Int8 _tasInnovGate ; // Number of standard deviations applied to true airspeed innovation consistency check
2014-01-29 04:03:07 -04:00
// Tuning parameters
AP_Float _gpsNEVelVarAccScale ; // scale factor applied to NE velocity measurement variance due to Vdot
AP_Float _gpsDVelVarAccScale ; // scale factor applied to D velocity measurement variance due to Vdot
AP_Float _gpsPosVarAccScale ; // scale factor applied to position measurement variance due to Vdot
AP_Int16 _msecHgtDelay ; // effective average delay of height measurements rel to (msec)
AP_Int16 _msecMagDelay ; // effective average delay of magnetometer measurements rel to IMU (msec)
AP_Int16 _msecTasDelay ; // effective average delay of airspeed measurements rel to IMU (msec)
2014-01-22 02:32:28 -04:00
AP_Int16 _gpsRetryTimeUseTAS ; // GPS retry time following innovation consistency fail if TAS measurements are used (msec)
AP_Int16 _gpsRetryTimeNoTAS ; // GPS retry time following innovation consistency fail if no TAS measurements are used (msec)
AP_Int16 _hgtRetryTimeMode0 ; // height measurement retry time following innovation consistency fail if GPS fusion mode is = 0 (msec)
AP_Int16 _hgtRetryTimeMode12 ; // height measurement retry time following innovation consistency fail if GPS fusion mode is > 0 (msec)
2014-01-20 06:27:50 -04:00
float _gyroBiasNoiseScaler ; // scale factor applied to gyro bias state process variance when on ground
float _magVarRateScale ; // scale factor applied to magnetometer variance due to angular rate
2014-01-30 18:25:40 -04:00
uint16_t _msecGpsAvg ; // average number of msec between GPS measurements
uint16_t _msecHgtAvg ; // average number of msec between height measurements
2014-01-22 05:42:39 -04:00
float dtVelPos ; // number of seconds between position and velocity corrections
2014-01-30 18:16:58 -04:00
2014-01-29 04:03:07 -04:00
// Variables
2014-01-22 05:42:39 -04:00
uint8_t skipCounter ; // counter used to skip position and height corrections to achieve _skipRatio
2014-01-30 18:25:40 -04:00
bool statesInitialised ; // boolean true when filter states have been initialised
2014-01-18 17:48:12 -04:00
bool staticModeDemanded ; // boolean true when staticMode has been demanded externally.
2014-01-30 18:25:40 -04:00
bool velHealth ; // boolean true if velocity measurements have failed innovation consistency check
bool posHealth ; // boolean true if position measurements have failed innovation consistency check
bool hgtHealth ; // boolean true if height measurements have failed innovation consistency check
bool velTimeout ; // boolean true if velocity measurements have failed innovation consistency check and timed out
bool posTimeout ; // boolean true if position measurements have failed innovation consistency check and timed out
bool hgtTimeout ; // boolean true if height measurements have failed innovation consistency check and timed out
Vector22 states ; // state matrix - 4 x quaternions, 3 x Vel, 3 x Pos, 3 x gyro bias, 3 x accel bias, 2 x wind vel, 3 x earth mag field, 3 x body mag field
Vector22 Kfusion ; // Kalman gain vector
Matrix22 KH ; // intermediate result used for covariance updates
Matrix22 KHP ; // intermediate result used for covariance updates
Matrix22 P ; // covariance matrix
Matrix22_50 storedStates ; // state vectors stored for the last 50 time steps
uint32_t statetimeStamp [ 50 ] ; // time stamp for each state vector stored
Vector3f correctedDelAng ; // delta angles about the xyz body axes corrected for errors (rad)
Vector3f correctedDelVel ; // delta velocities along the XYZ body axes corrected for errors (m/s)
Vector3f summedDelAng ; // corrected & summed delta angles about the xyz body axes (rad)
Vector3f summedDelVel ; // corrected & summed delta velocities along the XYZ body axes (m/s)
Vector3f prevDelAng ; // previous delta angle use for INS coning error compensation
Matrix3f prevTnb ; // previous nav to body transformation used for INS earth rotation compensation
ftype accNavMag ; // magnitude of navigation accel - used to adjust GPS obs variance (m/s^2)
Vector3f earthRateNED ; // earths angular rate vector in NED (rad/s)
Vector3f dVelIMU ; // delta velocity vector in XYZ body axes measured by the IMU (m/s)
Vector3f dAngIMU ; // delta angle vector in XYZ body axes measured by the IMU (rad)
ftype dtIMU ; // time lapsed since the last IMU measurement (sec)
ftype dt ; // time lapsed since the last covariance prediction (sec)
ftype hgtRate ; // state for rate of change of height filter
bool onGround ; // boolean true when the flight vehicle is on the ground (not flying)
const bool useAirspeed ; // boolean true if airspeed data is being used
const bool useCompass ; // boolean true if magnetometer data is being used
Vector6 innovVelPos ; // innovation output for a group of measurements
Vector6 varInnovVelPos ; // innovation variance output for a group of measurements
bool fuseVelData ; // this boolean causes the velNED measurements to be fused
bool fusePosData ; // this boolean causes the posNE measurements to be fused
bool fuseHgtData ; // this boolean causes the hgtMea measurements to be fused
Vector3f velNED ; // North, East, Down velocity measurements (m/s)
Vector2 posNE ; // North, East position measurements (m)
ftype hgtMea ; // height measurement relative to reference point (m)
Vector22 statesAtVelTime ; // States at the effective time of velNED measurements
Vector22 statesAtPosTime ; // States at the effective time of posNE measurements
Vector22 statesAtHgtTime ; // States at the effective time of hgtMea measurement
Vector3f innovMag ; // innovation output from fusion of X,Y,Z compass measurements
Vector3f varInnovMag ; // innovation variance output from fusion of X,Y,Z compass measurements
bool fuseMagData ; // boolean true when magnetometer data is to be fused
Vector3f magData ; // magnetometer flux readings in X,Y,Z body axes
Vector22 statesAtMagMeasTime ; // filter states at the effective time of compass measurements
ftype innovVtas ; // innovation output from fusion of airspeed measurements
ftype varInnovVtas ; // innovation variance output from fusion of airspeed measurements
bool fuseVtasData ; // boolean true when airspeed data is to be fused
float VtasMeas ; // true airspeed measurement (m/s)
Vector22 statesAtVtasMeasTime ; // filter states at the effective measurement time
Vector3f magBias ; // magnetometer bias vector in XYZ body axes
const ftype covTimeStepMax ; // maximum time allowed between covariance predictions
const ftype covDelAngMax ; // maximum delta angle between covariance predictions
bool covPredStep ; // boolean set to true when a covariance prediction step has been performed
bool magFusePerformed ; // boolean set to true when magnetometer fusion has been perfomred in that time step
bool magFuseRequired ; // boolean set to true when magnetometer fusion will be perfomred in the next time step
bool posVelFuseStep ; // boolean set to true when position and velocity fusion is being performed
bool tasFuseStep ; // boolean set to true when airspeed fusion is being performed
uint32_t TASmsecPrev ; // time stamp of last TAS fusion step
const uint32_t TASmsecMax ; // maximum allowed interval between TAS fusion steps
uint32_t MAGmsecPrev ; // time stamp of last compass fusion step
uint32_t HGTmsecPrev ; // time stamp of last height measurement fusion step
const bool fuseMeNow ; // boolean to force fusion whenever data arrives
bool staticMode ; // boolean to force position and velocity measurements to zero for pre-arm or bench testing
uint32_t lastMagUpdate ; // last time compass was updated
Vector3f velDotNED ; // rate of change of velocity in NED frame
Vector3f velDotNEDfilt ; // low pass filtered velDotNED
Vector3f lastVelDotNED ; // velDotNED filter state
uint32_t lastAirspeedUpdate ; // last time airspeed was updated
uint32_t IMUmsec ; // time that the last IMU value was taken
ftype gpsCourse ; // GPS ground course angle(rad)
ftype gpsGndSpd ; // GPS ground speed (m/s)
bool newDataGps ; // true when new GPS data has arrived
bool newDataMag ; // true when new magnetometer data has arrived
float gpsVarScaler ; // scaler applied to gps measurement variance to allow for oversampling
bool newDataTas ; // true when new airspeed data has arrived
2014-01-22 05:42:39 -04:00
bool tasDataWaiting ; // true when new airspeed data is waiting to be fused
2014-01-30 18:25:40 -04:00
bool newDataHgt ; // true when new height data has arrived
uint32_t lastHgtUpdate ; // time of last height measurement received (msec)
float hgtVarScaler ; // scaler applied to height measurement variance to allow for oversampling
2014-01-18 17:48:12 -04:00
uint32_t velFailTime ; // time stamp when GPS velocity measurement last failed covaraiance consistency check (msec)
uint32_t posFailTime ; // time stamp when GPS position measurement last failed covaraiance consistency check (msec)
uint32_t hgtFailTime ; // time stamp when height measurement last failed covaraiance consistency check (msec)
uint8_t storeIndex ; // State vector storage index
uint32_t lastFixTime_ms ; // time of last GPS fix used to determine if new data has arrived
2014-01-25 17:49:25 -04:00
uint32_t secondLastFixTime_ms ; // time of second last GPS fix used to determine how long since last update
2014-01-30 18:25:40 -04:00
Vector3f lastAngRate ; // angular rate from previous IMU sample used for trapezoidal integrator
Vector3f lastAccel ; // acceleration from previous IMU sample used for trapezoidal integrator
Matrix22 nextP ; // Predicted covariance matrix before addition of process noise to diagonals
Vector22 processNoise ; // process noise added to diagonals of predicted covariance matrix
Vector15 SF ; // intermediate variables used to calculate predicted covariance matrix
Vector8 SG ; // intermediate variables used to calculate predicted covariance matrix
Vector11 SQ ; // intermediate variables used to calculate predicted covariance matrix
Vector8 SPP ; // intermediate variables used to calculate predicted covariance matrix
2013-12-29 03:37:55 -04:00
2013-12-29 07:17:59 -04:00
// states held by magnetomter fusion across time steps
// magnetometer X,Y,Z measurements are fused across three time steps
2014-01-30 18:25:40 -04:00
// to level computational load as this is an expensive operation
2013-12-29 03:37:55 -04:00
struct {
2014-01-03 00:37:19 -04:00
ftype q0 ;
ftype q1 ;
ftype q2 ;
ftype q3 ;
ftype magN ;
ftype magE ;
ftype magD ;
ftype magXbias ;
ftype magYbias ;
ftype magZbias ;
2013-12-29 03:37:55 -04:00
uint8_t obsIndex ;
Matrix3f DCM ;
Vector3f MagPred ;
2014-01-03 00:37:19 -04:00
ftype R_MAG ;
ftype SH_MAG [ 9 ] ;
2013-12-29 03:37:55 -04:00
} mag_state ;
2013-12-30 06:27:50 -04:00
2013-12-30 06:41:28 -04:00
# if CONFIG_HAL_BOARD == HAL_BOARD_PX4
// performance counters
perf_counter_t _perf_UpdateFilter ;
perf_counter_t _perf_CovariancePrediction ;
perf_counter_t _perf_FuseVelPosNED ;
perf_counter_t _perf_FuseMagnetometer ;
perf_counter_t _perf_FuseAirspeed ;
# endif
2014-01-30 17:47:33 -04:00
} ;
2013-12-30 06:41:28 -04:00
# if CONFIG_HAL_BOARD != HAL_BOARD_PX4
# define perf_begin(x)
# define perf_end(x)
# endif
2013-12-29 03:37:55 -04:00
# endif // AP_NavEKF