mirror of https://github.com/ArduPilot/ardupilot
204 lines
7.7 KiB
C++
204 lines
7.7 KiB
C++
|
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
||
|
|
||
|
#include "Copter.h"
|
||
|
|
||
|
// Traditional helicopter variables and functions
|
||
|
|
||
|
#if FRAME_CONFIG == HELI_FRAME
|
||
|
|
||
|
#ifndef HELI_DYNAMIC_FLIGHT_SPEED_MIN
|
||
|
#define HELI_DYNAMIC_FLIGHT_SPEED_MIN 500 // we are in "dynamic flight" when the speed is over 1m/s for 2 seconds
|
||
|
#endif
|
||
|
|
||
|
// counter to control dynamic flight profile
|
||
|
static int8_t heli_dynamic_flight_counter;
|
||
|
|
||
|
// heli_init - perform any special initialisation required for the tradheli
|
||
|
void Copter::heli_init()
|
||
|
{
|
||
|
/*
|
||
|
automatically set H_RSC_MIN and H_RSC_MAX from RC8_MIN and
|
||
|
RC8_MAX so that when users upgrade from tradheli version 3.3 to
|
||
|
3.4 they get the same throttle range as in previous versions of
|
||
|
the code
|
||
|
*/
|
||
|
if (!g.heli_servo_rsc.radio_min.configured()) {
|
||
|
g.heli_servo_rsc.radio_min.set_and_save(g.rc_8.radio_min.get());
|
||
|
}
|
||
|
if (!g.heli_servo_rsc.radio_max.configured()) {
|
||
|
g.heli_servo_rsc.radio_max.set_and_save(g.rc_8.radio_max.get());
|
||
|
}
|
||
|
|
||
|
// pre-load stab col values as mode is initialized as Stabilize, but stabilize_init() function is not run on start-up.
|
||
|
input_manager.set_use_stab_col(true);
|
||
|
input_manager.set_stab_col_ramp(1.0);
|
||
|
}
|
||
|
|
||
|
// heli_check_dynamic_flight - updates the dynamic_flight flag based on our horizontal velocity
|
||
|
// should be called at 50hz
|
||
|
void Copter::check_dynamic_flight(void)
|
||
|
{
|
||
|
if (!motors.armed() || !motors.rotor_runup_complete() ||
|
||
|
control_mode == LAND || (control_mode==RTL && rtl_state == RTL_Land) || (control_mode == AUTO && auto_mode == Auto_Land)) {
|
||
|
heli_dynamic_flight_counter = 0;
|
||
|
heli_flags.dynamic_flight = false;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
bool moving = false;
|
||
|
|
||
|
// with GPS lock use inertial nav to determine if we are moving
|
||
|
if (position_ok()) {
|
||
|
// get horizontal velocity
|
||
|
float velocity = inertial_nav.get_velocity_xy();
|
||
|
moving = (velocity >= HELI_DYNAMIC_FLIGHT_SPEED_MIN);
|
||
|
}else{
|
||
|
// with no GPS lock base it on throttle and forward lean angle
|
||
|
moving = (motors.get_throttle() > 800.0f || ahrs.pitch_sensor < -1500);
|
||
|
}
|
||
|
|
||
|
if (!moving && sonar_enabled && sonar.status() == RangeFinder::RangeFinder_Good) {
|
||
|
// when we are more than 2m from the ground with good
|
||
|
// rangefinder lock consider it to be dynamic flight
|
||
|
moving = (sonar.distance_cm() > 200);
|
||
|
}
|
||
|
|
||
|
if (moving) {
|
||
|
// if moving for 2 seconds, set the dynamic flight flag
|
||
|
if (!heli_flags.dynamic_flight) {
|
||
|
heli_dynamic_flight_counter++;
|
||
|
if (heli_dynamic_flight_counter >= 100) {
|
||
|
heli_flags.dynamic_flight = true;
|
||
|
heli_dynamic_flight_counter = 100;
|
||
|
}
|
||
|
}
|
||
|
}else{
|
||
|
// if not moving for 2 seconds, clear the dynamic flight flag
|
||
|
if (heli_flags.dynamic_flight) {
|
||
|
if (heli_dynamic_flight_counter > 0) {
|
||
|
heli_dynamic_flight_counter--;
|
||
|
}else{
|
||
|
heli_flags.dynamic_flight = false;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// update_heli_control_dynamics - pushes several important factors up into AP_MotorsHeli.
|
||
|
// should be run between the rate controller and the servo updates.
|
||
|
void Copter::update_heli_control_dynamics(void)
|
||
|
{
|
||
|
static int16_t hover_roll_trim_scalar_slew = 0;
|
||
|
|
||
|
// Use Leaky_I if we are not moving fast
|
||
|
attitude_control.use_leaky_i(!heli_flags.dynamic_flight);
|
||
|
|
||
|
if (ap.land_complete || (motors.get_desired_rotor_speed() == 0)){
|
||
|
// if we are landed or there is no rotor power demanded, decrement slew scalar
|
||
|
hover_roll_trim_scalar_slew--;
|
||
|
} else {
|
||
|
// if we are not landed and motor power is demanded, increment slew scalar
|
||
|
hover_roll_trim_scalar_slew++;
|
||
|
}
|
||
|
hover_roll_trim_scalar_slew = constrain_int16(hover_roll_trim_scalar_slew, 0, MAIN_LOOP_RATE);
|
||
|
|
||
|
// set hover roll trim scalar, will ramp from 0 to 1 over 1 second after we think helicopter has taken off
|
||
|
attitude_control.set_hover_roll_trim_scalar((float)(hover_roll_trim_scalar_slew/MAIN_LOOP_RATE));
|
||
|
}
|
||
|
|
||
|
// heli_update_landing_swash - sets swash plate flag so higher minimum is used when landed or landing
|
||
|
// should be called soon after update_land_detector in main code
|
||
|
void Copter::heli_update_landing_swash()
|
||
|
{
|
||
|
switch(control_mode) {
|
||
|
case ACRO:
|
||
|
case STABILIZE:
|
||
|
case DRIFT:
|
||
|
case SPORT:
|
||
|
// manual modes always uses full swash range
|
||
|
motors.set_collective_for_landing(false);
|
||
|
break;
|
||
|
|
||
|
case LAND:
|
||
|
// landing always uses limit swash range
|
||
|
motors.set_collective_for_landing(true);
|
||
|
break;
|
||
|
|
||
|
case RTL:
|
||
|
if (rtl_state == RTL_Land) {
|
||
|
motors.set_collective_for_landing(true);
|
||
|
}else{
|
||
|
motors.set_collective_for_landing(!heli_flags.dynamic_flight || ap.land_complete || !ap.auto_armed);
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case AUTO:
|
||
|
if (auto_mode == Auto_Land) {
|
||
|
motors.set_collective_for_landing(true);
|
||
|
}else{
|
||
|
motors.set_collective_for_landing(!heli_flags.dynamic_flight || ap.land_complete || !ap.auto_armed);
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
// auto and hold use limited swash when landed
|
||
|
motors.set_collective_for_landing(!heli_flags.dynamic_flight || ap.land_complete || !ap.auto_armed);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// heli_update_rotor_speed_targets - reads pilot input and passes new rotor speed targets to heli motors object
|
||
|
void Copter::heli_update_rotor_speed_targets()
|
||
|
{
|
||
|
|
||
|
static bool rotor_runup_complete_last = false;
|
||
|
|
||
|
// get rotor control method
|
||
|
uint8_t rsc_control_mode = motors.get_rsc_mode();
|
||
|
|
||
|
rsc_control_deglitched = rotor_speed_deglitch_filter.apply(g.rc_8.control_in);
|
||
|
|
||
|
|
||
|
switch (rsc_control_mode) {
|
||
|
case ROTOR_CONTROL_MODE_SPEED_PASSTHROUGH:
|
||
|
// pass through pilot desired rotor speed if control input is higher than 10, creating a deadband at the bottom
|
||
|
if (rsc_control_deglitched > 10) {
|
||
|
motors.set_interlock(true);
|
||
|
motors.set_desired_rotor_speed(rsc_control_deglitched);
|
||
|
} else {
|
||
|
motors.set_interlock(false);
|
||
|
motors.set_desired_rotor_speed(0);
|
||
|
}
|
||
|
break;
|
||
|
case ROTOR_CONTROL_MODE_SPEED_SETPOINT:
|
||
|
case ROTOR_CONTROL_MODE_OPEN_LOOP_POWER_OUTPUT:
|
||
|
case ROTOR_CONTROL_MODE_CLOSED_LOOP_POWER_OUTPUT:
|
||
|
// pass setpoint through as desired rotor speed, this is almost pointless as the Setpoint serves no function in this mode
|
||
|
// other than being used to create a crude estimate of rotor speed
|
||
|
if (rsc_control_deglitched > 0) {
|
||
|
motors.set_interlock(true);
|
||
|
motors.set_desired_rotor_speed(motors.get_rsc_setpoint());
|
||
|
}else{
|
||
|
motors.set_interlock(false);
|
||
|
motors.set_desired_rotor_speed(0);
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
// when rotor_runup_complete changes to true, log event
|
||
|
if (!rotor_runup_complete_last && motors.rotor_runup_complete()){
|
||
|
Log_Write_Event(DATA_ROTOR_RUNUP_COMPLETE);
|
||
|
} else if (rotor_runup_complete_last && !motors.rotor_runup_complete()){
|
||
|
Log_Write_Event(DATA_ROTOR_SPEED_BELOW_CRITICAL);
|
||
|
}
|
||
|
rotor_runup_complete_last = motors.rotor_runup_complete();
|
||
|
}
|
||
|
|
||
|
// heli_radio_passthrough send RC inputs direct into motors library for use during manual passthrough for helicopter setup
|
||
|
void Copter::heli_radio_passthrough()
|
||
|
{
|
||
|
motors.set_radio_passthrough(channel_roll->control_in, channel_pitch->control_in, channel_throttle->control_in, channel_yaw->control_in);
|
||
|
}
|
||
|
|
||
|
#endif // FRAME_CONFIG == HELI_FRAME
|