ardupilot/libraries/AP_Baro/AP_Baro_BMP388.cpp

236 lines
6.6 KiB
C++
Raw Normal View History

2019-07-26 03:55:30 -03:00
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "AP_Baro_BMP388.h"
#include <utility>
extern const AP_HAL::HAL &hal;
#define BMP388_MODE_SLEEP 0
#define BMP388_MODE_FORCED 1
#define BMP388_MODE_NORMAL 3
#define BMP388_MODE BMP388_MODE_NORMAL
#define BMP388_ID 0x50
#define BMP388_REG_ID 0x00
#define BMP388_REG_ERR 0x02
#define BMP388_REG_STATUS 0x03
#define BMP388_REG_PRESS 0x04 // 24 bit
#define BMP388_REG_TEMP 0x07 // 24 bit
#define BMP388_REG_TIME 0x0C // 24 bit
#define BMP388_REG_EVENT 0x10
#define BMP388_REG_INT_STS 0x11
#define BMP388_REG_FIFO_LEN 0x12 // 9 bit
#define BMP388_REG_FIFO_DATA 0x14
#define BMP388_REG_FIFO_WTMK 0x15 // 9 bit
#define BMP388_REG_FIFO_CNF1 0x17
#define BMP388_REG_FIFO_CNF2 0x18
#define BMP388_REG_INT_CTRL 0x19
#define BMP388_REG_PWR_CTRL 0x1B
#define BMP388_REG_OSR 0x1C
#define BMP388_REG_ODR 0x1D
#define BMP388_REG_CONFIG 0x1F
#define BMP388_REG_CMD 0x7E
#define BMP388_REG_CAL_P 0x36
#define BMP388_REG_CAL_T 0x31
AP_Baro_BMP388::AP_Baro_BMP388(AP_Baro &baro, AP_HAL::OwnPtr<AP_HAL::Device> _dev)
: AP_Baro_Backend(baro)
, dev(std::move(_dev))
{
}
AP_Baro_Backend *AP_Baro_BMP388::probe(AP_Baro &baro,
AP_HAL::OwnPtr<AP_HAL::Device> _dev)
{
if (!_dev) {
return nullptr;
}
AP_Baro_BMP388 *sensor = new AP_Baro_BMP388(baro, std::move(_dev));
if (!sensor || !sensor->init()) {
delete sensor;
return nullptr;
}
return sensor;
}
bool AP_Baro_BMP388::init()
{
if (!dev) {
return false;
}
WITH_SEMAPHORE(dev->get_semaphore());
has_sample = false;
dev->set_speed(AP_HAL::Device::SPEED_HIGH);
// setup to allow reads on SPI
if (dev->bus_type() == AP_HAL::Device::BUS_TYPE_SPI) {
dev->set_read_flag(0x80);
}
// normal mode, temp and pressure
dev->write_register(BMP388_REG_PWR_CTRL, 0x33, true);
uint8_t whoami;
2020-05-11 04:22:07 -03:00
if (!read_registers(BMP388_REG_ID, &whoami, 1) ||
2019-07-26 03:55:30 -03:00
whoami != BMP388_ID) {
// not a BMP388
return false;
}
// read the calibration data
2020-05-11 04:22:07 -03:00
read_registers(BMP388_REG_CAL_P, (uint8_t *)&calib_p, sizeof(calib_p));
read_registers(BMP388_REG_CAL_T, (uint8_t *)&calib_t, sizeof(calib_t));
2019-07-26 03:55:30 -03:00
scale_calibration_data();
dev->setup_checked_registers(4);
// normal mode, temp and pressure
dev->write_register(BMP388_REG_PWR_CTRL, 0x33, true);
instance = _frontend.register_sensor();
// request 50Hz update
dev->register_periodic_callback(20 * AP_USEC_PER_MSEC, FUNCTOR_BIND_MEMBER(&AP_Baro_BMP388::timer, void));
return true;
}
// acumulate a new sensor reading
void AP_Baro_BMP388::timer(void)
{
uint8_t buf[7];
2020-05-11 04:22:07 -03:00
if (!read_registers(BMP388_REG_STATUS, buf, sizeof(buf))) {
2019-07-26 03:55:30 -03:00
return;
}
const uint8_t status = buf[0];
if ((status & 0x20) != 0) {
// we have pressure data
update_pressure((buf[3] << 16) | (buf[2] << 8) | buf[1]);
}
if ((status & 0x40) != 0) {
// we have temperature data
update_temperature((buf[6] << 16) | (buf[5] << 8) | buf[4]);
}
dev->check_next_register();
}
// transfer data to the frontend
void AP_Baro_BMP388::update(void)
{
WITH_SEMAPHORE(_sem);
if (!has_sample) {
return;
}
_copy_to_frontend(instance, pressure, temperature);
has_sample = false;
}
/*
convert calibration data from NVM values to values ready for
compensation calculations
*/
void AP_Baro_BMP388::scale_calibration_data(void)
{
// note that this assumes little-endian MCU
calib.par_t1 = calib_t.nvm_par_t1 * 256.0;
calib.par_t2 = calib_t.nvm_par_t2 / 1073741824.0f;
calib.par_t3 = calib_t.nvm_par_t3 / 281474976710656.0f;
calib.par_p1 = (calib_p.nvm_par_p1 - 16384) / 1048576.0f;
calib.par_p2 = (calib_p.nvm_par_p2 - 16384) / 536870912.0f;
calib.par_p3 = calib_p.nvm_par_p3 / 4294967296.0f;
calib.par_p4 = calib_p.nvm_par_p4 / 137438953472.0;
calib.par_p5 = calib_p.nvm_par_p5 * 8.0f;
calib.par_p6 = calib_p.nvm_par_p6 / 64.0;
calib.par_p7 = calib_p.nvm_par_p7 / 256.0f;
calib.par_p8 = calib_p.nvm_par_p8 / 32768.0f;
calib.par_p9 = calib_p.nvm_par_p9 / 281474976710656.0f;
calib.par_p10 = calib_p.nvm_par_p10 / 281474976710656.0f;
calib.par_p11 = calib_p.nvm_par_p11 / 36893488147419103232.0f;
}
/*
update temperature from raw sample
*/
void AP_Baro_BMP388::update_temperature(uint32_t data)
{
float partial1 = data - calib.par_t1;
float partial2 = partial1 * calib.par_t2;
WITH_SEMAPHORE(_sem);
temperature = partial2 + sq(partial1) * calib.par_t3;
}
/*
update pressure from raw pressure data
*/
void AP_Baro_BMP388::update_pressure(uint32_t data)
{
float partial1 = calib.par_p6 * temperature;
float partial2 = calib.par_p7 * powf(temperature, 2);
float partial3 = calib.par_p8 * powf(temperature, 3);
float partial_out1 = calib.par_p5 + partial1 + partial2 + partial3;
partial1 = calib.par_p2 * temperature;
partial2 = calib.par_p3 * powf(temperature, 2);
partial3 = calib.par_p4 * powf(temperature, 3);
float partial_out2 = data * (calib.par_p1 + partial1 + partial2 + partial3);
partial1 = powf(data, 2);
partial2 = calib.par_p9 + calib.par_p10 * temperature;
partial3 = partial1 * partial2;
float partial4 = partial3 + powf(data, 3) * calib.par_p11;
float press = partial_out1 + partial_out2 + partial4;
WITH_SEMAPHORE(_sem);
pressure = press;
has_sample = true;
}
2020-05-11 04:22:07 -03:00
/*
read registers, special SPI handling needed
*/
bool AP_Baro_BMP388::read_registers(uint8_t reg, uint8_t *data, uint8_t len)
{
// when on I2C we just read normally
if (dev->bus_type() != AP_HAL::Device::BUS_TYPE_SPI) {
return dev->read_registers(reg, data, len);
}
// for SPI we need to discard the first returned byte. See
// datasheet for explanation
uint8_t b[len+2];
b[0] = reg | 0x80;
memset(&b[1], 0, len+1);
if (!dev->transfer(b, len+2, b, len+2)) {
return false;
}
memcpy(data, &b[2], len);
return true;
}