ardupilot/libraries/AP_HAL_ChibiOS/hwdef/HerePro/scripts/hereproled.lua

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

315 lines
8.6 KiB
Lua
Raw Normal View History

-- This script is a test of led override
-- luacheck: only 0
local count = 0
local num_leds = 16
local total_time = 1
local animation_end = 0
local current_anim = 0
-- constrain a value between limits
function constrain(v, vmin, vmax)
if v < vmin then
v = vmin
end
if v > vmax then
v = vmax
end
return v
end
--[[
Table of neon colors on a rainbow, red first
--]]
-- local rainbow = {
-- { 252, 23, 0 },
-- { 253, 72, 37 },
-- { 250, 237, 39 },
-- { 51, 255, 20 },
-- { 27, 3, 163 }
-- }
local rainbow = {
{ 252, 23, 0 },
{ 253, 100, 0 },
{ 250, 237, 0 },
{ 51, 255, 20 },
{ 27, 3, 163 }
}
local led_map = {
14,
15,
2,
3,
4,
5,
6,
7,
8,
9,
1,
0,
10,
11,
12,
13}
function table.contains(table, element)
for _, value in pairs(table) do
if value == element then
return true
end
end
return false
end
--[[
Function to set a LED to a color on a classic rainbow spectrum, with v=0 giving red
--]]
function get_Rainbow(v, num_rows)
local row = math.floor(constrain(v * (num_rows-1)+1, 1, num_rows-1))
local v0 = (row-1) / (num_rows-1)
local v1 = row / (num_rows-1)
local p = (v - v0) / (v1 - v0)
r = math.max(math.floor(rainbow[row][1] + p * (rainbow[row+1][1] - rainbow[row][1])),0)
g = math.max(math.floor(rainbow[row][2] + p * (rainbow[row+1][2] - rainbow[row][2])),0)
b = math.max(math.floor(rainbow[row][3] + p * (rainbow[row+1][3] - rainbow[row][3])),0)
return r,g,b
end
function do_initialisation()
local pos = math.rad(total_time/2)
local v =0.5 + 0.5 * math.sin(pos)
local invert = 1
local r, g, b = get_Rainbow(v, 5)
local led_trail_length = 3
local softness = 10
local bfact = 1
local updated_leds = {}
if math.cos(pos) > 0 then
invert = 1
else
invert = 0
end
pos = math.floor(6 + (v*8))%16
if pos == 6 then
animation_end = 1
else
animation_end = 0
end
for trail = 0, led_trail_length-1 do
if invert == 1 then
bfact = softness^(2*(led_trail_length - 1 - trail)/(led_trail_length-1))
else
bfact = softness^(2*trail/(led_trail_length-1))
end
local led_id = 1 + ((pos + trail) % num_leds)
notify:handle_rgb_id(math.floor(r/bfact), math.floor(g/bfact), math.floor(b/bfact), led_map[led_id])
table.insert(updated_leds, led_id)
end
pos = math.floor(6 - (v*8))%16
for trail = 0, led_trail_length-1 do
if invert == 0 then
bfact = softness^(2*(led_trail_length - 1 - trail)/(led_trail_length-1))
else
bfact = softness^(2*trail/(led_trail_length-1))
end
local led_id = 1 + ((pos + trail) % num_leds)
notify:handle_rgb_id(math.floor(r/bfact), math.floor(g/bfact), math.floor(b/bfact), led_map[led_id])
table.insert(updated_leds, led_id)
end
for led = 1, num_leds do
if not table.contains(updated_leds, led) then
notify:handle_rgb_id(0, 0, 0, led_map[led])
end
end
end
function do_point_north(r, g, b, led_trail_length, softness)
local north_bias = 4
local yaw = 8 - ((16 * periph:get_yaw_earth()/(2*math.pi))) - north_bias
local ofs = yaw - math.floor(yaw+0.5)
yaw = math.floor(yaw+0.5) % 16
local updated_leds = {}
for trail = 0, led_trail_length-1 do
local bfact = softness^(2*(math.abs((led_trail_length-1)/2 - trail + ofs))/(led_trail_length-1))
local led_id = 1 + ((yaw + trail) % 16)
notify:handle_rgb_id(math.floor(r/bfact), math.floor(g/bfact), math.floor(b/bfact), led_map[led_id])
table.insert(updated_leds, led_id)
end
for led = 1, num_leds do
if not table.contains(updated_leds, led) then
notify:handle_rgb_id(0, 0, 0, led_map[led])
end
end
return yaw
end
function finish_initialisation(r, g, b, led_trail_length, softness, speed_factor, next_call)
local north_bias = 4
local yaw = 8 - ((16 * periph:get_yaw_earth()/(2*math.pi))) - north_bias
yaw = math.floor(yaw+0.5) % 16
local led_id = math.floor((count/speed_factor) + north_bias) % 16
if yaw == led_id then
if total_time > 3000 then
animation_end = 1
end
return
end
count = count + next_call
local updated_leds = {}
for trail = 0, led_trail_length-1 do
local bfact = softness^(2*(math.abs((led_trail_length-1)/2 - trail))/(led_trail_length-1))
local this_led_id = 1 + ((led_id + trail) % 16)
notify:handle_rgb_id(math.floor(r/bfact), math.floor(g/bfact), math.floor(b/bfact), led_map[this_led_id])
table.insert(updated_leds, this_led_id)
end
for led = 1, num_leds do
if not table.contains(updated_leds, led) then
notify:handle_rgb_id(0, 0, 0, led_map[led])
end
end
end
function do_arm_spin(r, g, b, softness, speed_factor, arming)
-- reset led states
local updated_leds = {}
-- calculate next call based on time
local next_call = 1
if arming then
next_call = speed_factor - math.floor(((total_time)/speed_factor) + 0.5)
if next_call < 1 then
return next_call
end
else
next_call = 1 + math.floor(((total_time)/speed_factor) + 0.5)
if next_call > speed_factor then
return next_call
end
end
-- set trail length bassed on spin progress
local led_trail_length = 3 + (13 * (1 - (next_call/75)))
-- create a trail
for trail = 0, led_trail_length-1 do
local bfact = softness^(led_trail_length - trail)
local led_id = 1 + (count + trail) % 16
notify:handle_rgb_id(math.floor(r/bfact), math.floor(g/bfact), math.floor(b/bfact), led_map[led_id])
table.insert(updated_leds, led_id)
end
for led = 1, num_leds do
if not table.contains(updated_leds, led) then
notify:handle_rgb_id(0, 0, 0, led_map[led])
end
end
return next_call
end
function set_all(r, g, b)
for led = 1, num_leds do
notify:handle_rgb_id(r, g, b, led_map[led])
end
end
function animation_state_machine(vehicle_state)
-- change state only when last loop finished
if animation_end == 0 then
return
end
if ((vehicle_state & 1) == uint32_t(1)) then
-- do_initialisation
if current_anim ~= 0 then
current_anim = 0
total_time = 0
animation_end = 0
end
elseif current_anim == 0 then
-- do finish by move to north
count = 0
total_time = 0
current_anim = 1
animation_end = 0
elseif current_anim == 1 then
-- do always point north
current_anim = 2
elseif current_anim ~= 3 and ((vehicle_state & (1 << 1)) ~= uint32_t(0)) then --VEHICLE_STATE_ARMED
total_time = 0
current_anim = 3
animation_end = 0
elseif current_anim == 3 and ((vehicle_state & (1 << 1)) == uint32_t(0)) then
total_time = 0
current_anim = 4
animation_end = 0
elseif current_anim == 4 then
current_anim = 1
end
end
function update() -- this is the loop which periodically runs
local next_call = 20
local vehicle_state = periph:get_vehicle_state()
animation_state_machine(vehicle_state)
-- Initialisation
if current_anim == 0 then
do_initialisation()
total_time = total_time + next_call
elseif current_anim == 1 then
finish_initialisation(rainbow[1][1], rainbow[1][2], rainbow[1][3], 5, 20, 50, next_call)
total_time = total_time + next_call
elseif current_anim == 2 then
local v
if (vehicle_state & (1<<3)) ~= uint32_t(0) or --VEHICLE_STATE_PREARM
(vehicle_state & (1<<4)) ~= uint32_t(0) or --VEHICLE_STATE_PREARM_GPS
(vehicle_state & (1<<7)) ~= uint32_t(0) or --VEHICLE_STATE_FAILSAFE_RADIO
(vehicle_state & (1<<8)) ~= uint32_t(0) or --VEHICLE_STATE_FAILSAFE_BATT
(vehicle_state & (1<<11)) ~= uint32_t(0) then --VEHICLE_STATE_EKF_BAD
v = 0.0
end
if (vehicle_state & (1<<17)) == uint32_t(0) then--VEHICLE_STATE_POS_ABS_AVAIL
v = 0.5 + (0.5 * math.min(gps:num_sats(0)/20, 1.0))
else
v = 1.0
end
local r, g, b = get_Rainbow(v, 4)
count = do_point_north(r, g, b, 5, 20)
-- --[[ ARM Display
elseif current_anim == 3 then
if animation_end == 0 then
next_call = do_arm_spin(rainbow[4][1], rainbow[4][2], rainbow[4][3], 2, 75, true)
count = count + 1
end
if next_call < 1 then
set_all(rainbow[4][1], rainbow[4][2], rainbow[4][3])
animation_end = 1
else
total_time = total_time + next_call
end
elseif current_anim == 4 then
if animation_end == 0 then
next_call = do_arm_spin(rainbow[4][1], rainbow[4][2], rainbow[4][3], 2, 75, false)
count = count - 1
end
if next_call > 75 then
animation_end = 1
else
total_time = total_time + next_call
end
end
-- gcs:send_text(0, string.format("NCALL: %s", tostring(next_call)))
return update, next_call -- reschedules the loop in next_call milliseconds
end
return update() -- run immediately before starting to reschedule