mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-14 20:58:30 -04:00
2272 lines
68 KiB
Python
2272 lines
68 KiB
Python
|
#!/usr/bin/env python
|
||
|
#
|
||
|
# euclid graphics maths module
|
||
|
#
|
||
|
# Copyright (c) 2006 Alex Holkner
|
||
|
# Alex.Holkner@mail.google.com
|
||
|
#
|
||
|
# This library is free software; you can redistribute it and/or modify it
|
||
|
# under the terms of the GNU Lesser General Public License as published by the
|
||
|
# Free Software Foundation; either version 2.1 of the License, or (at your
|
||
|
# option) any later version.
|
||
|
#
|
||
|
# This library is distributed in the hope that it will be useful, but WITHOUT
|
||
|
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
|
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
|
||
|
# for more details.
|
||
|
#
|
||
|
# You should have received a copy of the GNU Lesser General Public License
|
||
|
# along with this library; if not, write to the Free Software Foundation,
|
||
|
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
|
||
|
'''euclid graphics maths module
|
||
|
|
||
|
Documentation and tests are included in the file "euclid.txt", or online
|
||
|
at http://code.google.com/p/pyeuclid
|
||
|
'''
|
||
|
|
||
|
__docformat__ = 'restructuredtext'
|
||
|
__version__ = '$Id$'
|
||
|
__revision__ = '$Revision$'
|
||
|
|
||
|
import math
|
||
|
import operator
|
||
|
import types
|
||
|
|
||
|
# Some magic here. If _use_slots is True, the classes will derive from
|
||
|
# object and will define a __slots__ class variable. If _use_slots is
|
||
|
# False, classes will be old-style and will not define __slots__.
|
||
|
#
|
||
|
# _use_slots = True: Memory efficient, probably faster in future versions
|
||
|
# of Python, "better".
|
||
|
# _use_slots = False: Ordinary classes, much faster than slots in current
|
||
|
# versions of Python (2.4 and 2.5).
|
||
|
_use_slots = True
|
||
|
|
||
|
# If True, allows components of Vector2 and Vector3 to be set via swizzling;
|
||
|
# e.g. v.xyz = (1, 2, 3). This is much, much slower than the more verbose
|
||
|
# v.x = 1; v.y = 2; v.z = 3, and slows down ordinary element setting as
|
||
|
# well. Recommended setting is False.
|
||
|
_enable_swizzle_set = False
|
||
|
|
||
|
# Requires class to derive from object.
|
||
|
if _enable_swizzle_set:
|
||
|
_use_slots = True
|
||
|
|
||
|
# Implement _use_slots magic.
|
||
|
class _EuclidMetaclass(type):
|
||
|
def __new__(cls, name, bases, dct):
|
||
|
if '__slots__' in dct:
|
||
|
dct['__getstate__'] = cls._create_getstate(dct['__slots__'])
|
||
|
dct['__setstate__'] = cls._create_setstate(dct['__slots__'])
|
||
|
if _use_slots:
|
||
|
return type.__new__(cls, name, bases + (object,), dct)
|
||
|
else:
|
||
|
if '__slots__' in dct:
|
||
|
del dct['__slots__']
|
||
|
return types.ClassType.__new__(types.ClassType, name, bases, dct)
|
||
|
|
||
|
@classmethod
|
||
|
def _create_getstate(cls, slots):
|
||
|
def __getstate__(self):
|
||
|
d = {}
|
||
|
for slot in slots:
|
||
|
d[slot] = getattr(self, slot)
|
||
|
return d
|
||
|
return __getstate__
|
||
|
|
||
|
@classmethod
|
||
|
def _create_setstate(cls, slots):
|
||
|
def __setstate__(self, state):
|
||
|
for name, value in state.items():
|
||
|
setattr(self, name, value)
|
||
|
return __setstate__
|
||
|
|
||
|
__metaclass__ = _EuclidMetaclass
|
||
|
|
||
|
class Vector2:
|
||
|
__slots__ = ['x', 'y']
|
||
|
__hash__ = None
|
||
|
|
||
|
def __init__(self, x=0, y=0):
|
||
|
self.x = x
|
||
|
self.y = y
|
||
|
|
||
|
def __copy__(self):
|
||
|
return self.__class__(self.x, self.y)
|
||
|
|
||
|
copy = __copy__
|
||
|
|
||
|
def __repr__(self):
|
||
|
return 'Vector2(%.2f, %.2f)' % (self.x, self.y)
|
||
|
|
||
|
def __eq__(self, other):
|
||
|
if isinstance(other, Vector2):
|
||
|
return self.x == other.x and \
|
||
|
self.y == other.y
|
||
|
else:
|
||
|
assert hasattr(other, '__len__') and len(other) == 2
|
||
|
return self.x == other[0] and \
|
||
|
self.y == other[1]
|
||
|
|
||
|
def __ne__(self, other):
|
||
|
return not self.__eq__(other)
|
||
|
|
||
|
def __nonzero__(self):
|
||
|
return self.x != 0 or self.y != 0
|
||
|
|
||
|
def __len__(self):
|
||
|
return 2
|
||
|
|
||
|
def __getitem__(self, key):
|
||
|
return (self.x, self.y)[key]
|
||
|
|
||
|
def __setitem__(self, key, value):
|
||
|
l = [self.x, self.y]
|
||
|
l[key] = value
|
||
|
self.x, self.y = l
|
||
|
|
||
|
def __iter__(self):
|
||
|
return iter((self.x, self.y))
|
||
|
|
||
|
def __getattr__(self, name):
|
||
|
try:
|
||
|
return tuple([(self.x, self.y)['xy'.index(c)] \
|
||
|
for c in name])
|
||
|
except ValueError:
|
||
|
raise AttributeError, name
|
||
|
|
||
|
if _enable_swizzle_set:
|
||
|
# This has detrimental performance on ordinary setattr as well
|
||
|
# if enabled
|
||
|
def __setattr__(self, name, value):
|
||
|
if len(name) == 1:
|
||
|
object.__setattr__(self, name, value)
|
||
|
else:
|
||
|
try:
|
||
|
l = [self.x, self.y]
|
||
|
for c, v in map(None, name, value):
|
||
|
l['xy'.index(c)] = v
|
||
|
self.x, self.y = l
|
||
|
except ValueError:
|
||
|
raise AttributeError, name
|
||
|
|
||
|
def __add__(self, other):
|
||
|
if isinstance(other, Vector2):
|
||
|
# Vector + Vector -> Vector
|
||
|
# Vector + Point -> Point
|
||
|
# Point + Point -> Vector
|
||
|
if self.__class__ is other.__class__:
|
||
|
_class = Vector2
|
||
|
else:
|
||
|
_class = Point2
|
||
|
return _class(self.x + other.x,
|
||
|
self.y + other.y)
|
||
|
else:
|
||
|
assert hasattr(other, '__len__') and len(other) == 2
|
||
|
return Vector2(self.x + other[0],
|
||
|
self.y + other[1])
|
||
|
__radd__ = __add__
|
||
|
|
||
|
def __iadd__(self, other):
|
||
|
if isinstance(other, Vector2):
|
||
|
self.x += other.x
|
||
|
self.y += other.y
|
||
|
else:
|
||
|
self.x += other[0]
|
||
|
self.y += other[1]
|
||
|
return self
|
||
|
|
||
|
def __sub__(self, other):
|
||
|
if isinstance(other, Vector2):
|
||
|
# Vector - Vector -> Vector
|
||
|
# Vector - Point -> Point
|
||
|
# Point - Point -> Vector
|
||
|
if self.__class__ is other.__class__:
|
||
|
_class = Vector2
|
||
|
else:
|
||
|
_class = Point2
|
||
|
return _class(self.x - other.x,
|
||
|
self.y - other.y)
|
||
|
else:
|
||
|
assert hasattr(other, '__len__') and len(other) == 2
|
||
|
return Vector2(self.x - other[0],
|
||
|
self.y - other[1])
|
||
|
|
||
|
|
||
|
def __rsub__(self, other):
|
||
|
if isinstance(other, Vector2):
|
||
|
return Vector2(other.x - self.x,
|
||
|
other.y - self.y)
|
||
|
else:
|
||
|
assert hasattr(other, '__len__') and len(other) == 2
|
||
|
return Vector2(other.x - self[0],
|
||
|
other.y - self[1])
|
||
|
|
||
|
def __mul__(self, other):
|
||
|
assert type(other) in (int, long, float)
|
||
|
return Vector2(self.x * other,
|
||
|
self.y * other)
|
||
|
|
||
|
__rmul__ = __mul__
|
||
|
|
||
|
def __imul__(self, other):
|
||
|
assert type(other) in (int, long, float)
|
||
|
self.x *= other
|
||
|
self.y *= other
|
||
|
return self
|
||
|
|
||
|
def __div__(self, other):
|
||
|
assert type(other) in (int, long, float)
|
||
|
return Vector2(operator.div(self.x, other),
|
||
|
operator.div(self.y, other))
|
||
|
|
||
|
|
||
|
def __rdiv__(self, other):
|
||
|
assert type(other) in (int, long, float)
|
||
|
return Vector2(operator.div(other, self.x),
|
||
|
operator.div(other, self.y))
|
||
|
|
||
|
def __floordiv__(self, other):
|
||
|
assert type(other) in (int, long, float)
|
||
|
return Vector2(operator.floordiv(self.x, other),
|
||
|
operator.floordiv(self.y, other))
|
||
|
|
||
|
|
||
|
def __rfloordiv__(self, other):
|
||
|
assert type(other) in (int, long, float)
|
||
|
return Vector2(operator.floordiv(other, self.x),
|
||
|
operator.floordiv(other, self.y))
|
||
|
|
||
|
def __truediv__(self, other):
|
||
|
assert type(other) in (int, long, float)
|
||
|
return Vector2(operator.truediv(self.x, other),
|
||
|
operator.truediv(self.y, other))
|
||
|
|
||
|
|
||
|
def __rtruediv__(self, other):
|
||
|
assert type(other) in (int, long, float)
|
||
|
return Vector2(operator.truediv(other, self.x),
|
||
|
operator.truediv(other, self.y))
|
||
|
|
||
|
def __neg__(self):
|
||
|
return Vector2(-self.x,
|
||
|
-self.y)
|
||
|
|
||
|
__pos__ = __copy__
|
||
|
|
||
|
def __abs__(self):
|
||
|
return math.sqrt(self.x ** 2 + \
|
||
|
self.y ** 2)
|
||
|
|
||
|
magnitude = __abs__
|
||
|
|
||
|
def magnitude_squared(self):
|
||
|
return self.x ** 2 + \
|
||
|
self.y ** 2
|
||
|
|
||
|
def normalize(self):
|
||
|
d = self.magnitude()
|
||
|
if d:
|
||
|
self.x /= d
|
||
|
self.y /= d
|
||
|
return self
|
||
|
|
||
|
def normalized(self):
|
||
|
d = self.magnitude()
|
||
|
if d:
|
||
|
return Vector2(self.x / d,
|
||
|
self.y / d)
|
||
|
return self.copy()
|
||
|
|
||
|
def dot(self, other):
|
||
|
assert isinstance(other, Vector2)
|
||
|
return self.x * other.x + \
|
||
|
self.y * other.y
|
||
|
|
||
|
def cross(self):
|
||
|
return Vector2(self.y, -self.x)
|
||
|
|
||
|
def reflect(self, normal):
|
||
|
# assume normal is normalized
|
||
|
assert isinstance(normal, Vector2)
|
||
|
d = 2 * (self.x * normal.x + self.y * normal.y)
|
||
|
return Vector2(self.x - d * normal.x,
|
||
|
self.y - d * normal.y)
|
||
|
|
||
|
class Vector3:
|
||
|
__slots__ = ['x', 'y', 'z']
|
||
|
__hash__ = None
|
||
|
|
||
|
def __init__(self, x=0, y=0, z=0):
|
||
|
self.x = x
|
||
|
self.y = y
|
||
|
self.z = z
|
||
|
|
||
|
def __copy__(self):
|
||
|
return self.__class__(self.x, self.y, self.z)
|
||
|
|
||
|
copy = __copy__
|
||
|
|
||
|
def __repr__(self):
|
||
|
return 'Vector3(%.2f, %.2f, %.2f)' % (self.x,
|
||
|
self.y,
|
||
|
self.z)
|
||
|
|
||
|
def __eq__(self, other):
|
||
|
if isinstance(other, Vector3):
|
||
|
return self.x == other.x and \
|
||
|
self.y == other.y and \
|
||
|
self.z == other.z
|
||
|
else:
|
||
|
assert hasattr(other, '__len__') and len(other) == 3
|
||
|
return self.x == other[0] and \
|
||
|
self.y == other[1] and \
|
||
|
self.z == other[2]
|
||
|
|
||
|
def __ne__(self, other):
|
||
|
return not self.__eq__(other)
|
||
|
|
||
|
def __nonzero__(self):
|
||
|
return self.x != 0 or self.y != 0 or self.z != 0
|
||
|
|
||
|
def __len__(self):
|
||
|
return 3
|
||
|
|
||
|
def __getitem__(self, key):
|
||
|
return (self.x, self.y, self.z)[key]
|
||
|
|
||
|
def __setitem__(self, key, value):
|
||
|
l = [self.x, self.y, self.z]
|
||
|
l[key] = value
|
||
|
self.x, self.y, self.z = l
|
||
|
|
||
|
def __iter__(self):
|
||
|
return iter((self.x, self.y, self.z))
|
||
|
|
||
|
def __getattr__(self, name):
|
||
|
try:
|
||
|
return tuple([(self.x, self.y, self.z)['xyz'.index(c)] \
|
||
|
for c in name])
|
||
|
except ValueError:
|
||
|
raise AttributeError, name
|
||
|
|
||
|
if _enable_swizzle_set:
|
||
|
# This has detrimental performance on ordinary setattr as well
|
||
|
# if enabled
|
||
|
def __setattr__(self, name, value):
|
||
|
if len(name) == 1:
|
||
|
object.__setattr__(self, name, value)
|
||
|
else:
|
||
|
try:
|
||
|
l = [self.x, self.y, self.z]
|
||
|
for c, v in map(None, name, value):
|
||
|
l['xyz'.index(c)] = v
|
||
|
self.x, self.y, self.z = l
|
||
|
except ValueError:
|
||
|
raise AttributeError, name
|
||
|
|
||
|
|
||
|
def __add__(self, other):
|
||
|
if isinstance(other, Vector3):
|
||
|
# Vector + Vector -> Vector
|
||
|
# Vector + Point -> Point
|
||
|
# Point + Point -> Vector
|
||
|
if self.__class__ is other.__class__:
|
||
|
_class = Vector3
|
||
|
else:
|
||
|
_class = Point3
|
||
|
return _class(self.x + other.x,
|
||
|
self.y + other.y,
|
||
|
self.z + other.z)
|
||
|
else:
|
||
|
assert hasattr(other, '__len__') and len(other) == 3
|
||
|
return Vector3(self.x + other[0],
|
||
|
self.y + other[1],
|
||
|
self.z + other[2])
|
||
|
__radd__ = __add__
|
||
|
|
||
|
def __iadd__(self, other):
|
||
|
if isinstance(other, Vector3):
|
||
|
self.x += other.x
|
||
|
self.y += other.y
|
||
|
self.z += other.z
|
||
|
else:
|
||
|
self.x += other[0]
|
||
|
self.y += other[1]
|
||
|
self.z += other[2]
|
||
|
return self
|
||
|
|
||
|
def __sub__(self, other):
|
||
|
if isinstance(other, Vector3):
|
||
|
# Vector - Vector -> Vector
|
||
|
# Vector - Point -> Point
|
||
|
# Point - Point -> Vector
|
||
|
if self.__class__ is other.__class__:
|
||
|
_class = Vector3
|
||
|
else:
|
||
|
_class = Point3
|
||
|
return Vector3(self.x - other.x,
|
||
|
self.y - other.y,
|
||
|
self.z - other.z)
|
||
|
else:
|
||
|
assert hasattr(other, '__len__') and len(other) == 3
|
||
|
return Vector3(self.x - other[0],
|
||
|
self.y - other[1],
|
||
|
self.z - other[2])
|
||
|
|
||
|
|
||
|
def __rsub__(self, other):
|
||
|
if isinstance(other, Vector3):
|
||
|
return Vector3(other.x - self.x,
|
||
|
other.y - self.y,
|
||
|
other.z - self.z)
|
||
|
else:
|
||
|
assert hasattr(other, '__len__') and len(other) == 3
|
||
|
return Vector3(other.x - self[0],
|
||
|
other.y - self[1],
|
||
|
other.z - self[2])
|
||
|
|
||
|
def __mul__(self, other):
|
||
|
if isinstance(other, Vector3):
|
||
|
# TODO component-wise mul/div in-place and on Vector2; docs.
|
||
|
if self.__class__ is Point3 or other.__class__ is Point3:
|
||
|
_class = Point3
|
||
|
else:
|
||
|
_class = Vector3
|
||
|
return _class(self.x * other.x,
|
||
|
self.y * other.y,
|
||
|
self.z * other.z)
|
||
|
else:
|
||
|
assert type(other) in (int, long, float)
|
||
|
return Vector3(self.x * other,
|
||
|
self.y * other,
|
||
|
self.z * other)
|
||
|
|
||
|
__rmul__ = __mul__
|
||
|
|
||
|
def __imul__(self, other):
|
||
|
assert type(other) in (int, long, float)
|
||
|
self.x *= other
|
||
|
self.y *= other
|
||
|
self.z *= other
|
||
|
return self
|
||
|
|
||
|
def __div__(self, other):
|
||
|
assert type(other) in (int, long, float)
|
||
|
return Vector3(operator.div(self.x, other),
|
||
|
operator.div(self.y, other),
|
||
|
operator.div(self.z, other))
|
||
|
|
||
|
|
||
|
def __rdiv__(self, other):
|
||
|
assert type(other) in (int, long, float)
|
||
|
return Vector3(operator.div(other, self.x),
|
||
|
operator.div(other, self.y),
|
||
|
operator.div(other, self.z))
|
||
|
|
||
|
def __floordiv__(self, other):
|
||
|
assert type(other) in (int, long, float)
|
||
|
return Vector3(operator.floordiv(self.x, other),
|
||
|
operator.floordiv(self.y, other),
|
||
|
operator.floordiv(self.z, other))
|
||
|
|
||
|
|
||
|
def __rfloordiv__(self, other):
|
||
|
assert type(other) in (int, long, float)
|
||
|
return Vector3(operator.floordiv(other, self.x),
|
||
|
operator.floordiv(other, self.y),
|
||
|
operator.floordiv(other, self.z))
|
||
|
|
||
|
def __truediv__(self, other):
|
||
|
assert type(other) in (int, long, float)
|
||
|
return Vector3(operator.truediv(self.x, other),
|
||
|
operator.truediv(self.y, other),
|
||
|
operator.truediv(self.z, other))
|
||
|
|
||
|
|
||
|
def __rtruediv__(self, other):
|
||
|
assert type(other) in (int, long, float)
|
||
|
return Vector3(operator.truediv(other, self.x),
|
||
|
operator.truediv(other, self.y),
|
||
|
operator.truediv(other, self.z))
|
||
|
|
||
|
def __neg__(self):
|
||
|
return Vector3(-self.x,
|
||
|
-self.y,
|
||
|
-self.z)
|
||
|
|
||
|
__pos__ = __copy__
|
||
|
|
||
|
def __abs__(self):
|
||
|
return math.sqrt(self.x ** 2 + \
|
||
|
self.y ** 2 + \
|
||
|
self.z ** 2)
|
||
|
|
||
|
magnitude = __abs__
|
||
|
|
||
|
def magnitude_squared(self):
|
||
|
return self.x ** 2 + \
|
||
|
self.y ** 2 + \
|
||
|
self.z ** 2
|
||
|
|
||
|
def normalize(self):
|
||
|
d = self.magnitude()
|
||
|
if d:
|
||
|
self.x /= d
|
||
|
self.y /= d
|
||
|
self.z /= d
|
||
|
return self
|
||
|
|
||
|
def normalized(self):
|
||
|
d = self.magnitude()
|
||
|
if d:
|
||
|
return Vector3(self.x / d,
|
||
|
self.y / d,
|
||
|
self.z / d)
|
||
|
return self.copy()
|
||
|
|
||
|
def dot(self, other):
|
||
|
assert isinstance(other, Vector3)
|
||
|
return self.x * other.x + \
|
||
|
self.y * other.y + \
|
||
|
self.z * other.z
|
||
|
|
||
|
def cross(self, other):
|
||
|
assert isinstance(other, Vector3)
|
||
|
return Vector3(self.y * other.z - self.z * other.y,
|
||
|
-self.x * other.z + self.z * other.x,
|
||
|
self.x * other.y - self.y * other.x)
|
||
|
|
||
|
def reflect(self, normal):
|
||
|
# assume normal is normalized
|
||
|
assert isinstance(normal, Vector3)
|
||
|
d = 2 * (self.x * normal.x + self.y * normal.y + self.z * normal.z)
|
||
|
return Vector3(self.x - d * normal.x,
|
||
|
self.y - d * normal.y,
|
||
|
self.z - d * normal.z)
|
||
|
|
||
|
# a b c
|
||
|
# e f g
|
||
|
# i j k
|
||
|
|
||
|
class Matrix3:
|
||
|
__slots__ = list('abcefgijk')
|
||
|
|
||
|
def __init__(self):
|
||
|
self.identity()
|
||
|
|
||
|
def __copy__(self):
|
||
|
M = Matrix3()
|
||
|
M.a = self.a
|
||
|
M.b = self.b
|
||
|
M.c = self.c
|
||
|
M.e = self.e
|
||
|
M.f = self.f
|
||
|
M.g = self.g
|
||
|
M.i = self.i
|
||
|
M.j = self.j
|
||
|
M.k = self.k
|
||
|
return M
|
||
|
|
||
|
copy = __copy__
|
||
|
def __repr__(self):
|
||
|
return ('Matrix3([% 8.2f % 8.2f % 8.2f\n' \
|
||
|
' % 8.2f % 8.2f % 8.2f\n' \
|
||
|
' % 8.2f % 8.2f % 8.2f])') \
|
||
|
% (self.a, self.b, self.c,
|
||
|
self.e, self.f, self.g,
|
||
|
self.i, self.j, self.k)
|
||
|
|
||
|
def __getitem__(self, key):
|
||
|
return [self.a, self.e, self.i,
|
||
|
self.b, self.f, self.j,
|
||
|
self.c, self.g, self.k][key]
|
||
|
|
||
|
def __setitem__(self, key, value):
|
||
|
L = self[:]
|
||
|
L[key] = value
|
||
|
(self.a, self.e, self.i,
|
||
|
self.b, self.f, self.j,
|
||
|
self.c, self.g, self.k) = L
|
||
|
|
||
|
def __mul__(self, other):
|
||
|
if isinstance(other, Matrix3):
|
||
|
# Caching repeatedly accessed attributes in local variables
|
||
|
# apparently increases performance by 20%. Attrib: Will McGugan.
|
||
|
Aa = self.a
|
||
|
Ab = self.b
|
||
|
Ac = self.c
|
||
|
Ae = self.e
|
||
|
Af = self.f
|
||
|
Ag = self.g
|
||
|
Ai = self.i
|
||
|
Aj = self.j
|
||
|
Ak = self.k
|
||
|
Ba = other.a
|
||
|
Bb = other.b
|
||
|
Bc = other.c
|
||
|
Be = other.e
|
||
|
Bf = other.f
|
||
|
Bg = other.g
|
||
|
Bi = other.i
|
||
|
Bj = other.j
|
||
|
Bk = other.k
|
||
|
C = Matrix3()
|
||
|
C.a = Aa * Ba + Ab * Be + Ac * Bi
|
||
|
C.b = Aa * Bb + Ab * Bf + Ac * Bj
|
||
|
C.c = Aa * Bc + Ab * Bg + Ac * Bk
|
||
|
C.e = Ae * Ba + Af * Be + Ag * Bi
|
||
|
C.f = Ae * Bb + Af * Bf + Ag * Bj
|
||
|
C.g = Ae * Bc + Af * Bg + Ag * Bk
|
||
|
C.i = Ai * Ba + Aj * Be + Ak * Bi
|
||
|
C.j = Ai * Bb + Aj * Bf + Ak * Bj
|
||
|
C.k = Ai * Bc + Aj * Bg + Ak * Bk
|
||
|
return C
|
||
|
elif isinstance(other, Point2):
|
||
|
A = self
|
||
|
B = other
|
||
|
P = Point2(0, 0)
|
||
|
P.x = A.a * B.x + A.b * B.y + A.c
|
||
|
P.y = A.e * B.x + A.f * B.y + A.g
|
||
|
return P
|
||
|
elif isinstance(other, Vector2):
|
||
|
A = self
|
||
|
B = other
|
||
|
V = Vector2(0, 0)
|
||
|
V.x = A.a * B.x + A.b * B.y
|
||
|
V.y = A.e * B.x + A.f * B.y
|
||
|
return V
|
||
|
else:
|
||
|
other = other.copy()
|
||
|
other._apply_transform(self)
|
||
|
return other
|
||
|
|
||
|
def __imul__(self, other):
|
||
|
assert isinstance(other, Matrix3)
|
||
|
# Cache attributes in local vars (see Matrix3.__mul__).
|
||
|
Aa = self.a
|
||
|
Ab = self.b
|
||
|
Ac = self.c
|
||
|
Ae = self.e
|
||
|
Af = self.f
|
||
|
Ag = self.g
|
||
|
Ai = self.i
|
||
|
Aj = self.j
|
||
|
Ak = self.k
|
||
|
Ba = other.a
|
||
|
Bb = other.b
|
||
|
Bc = other.c
|
||
|
Be = other.e
|
||
|
Bf = other.f
|
||
|
Bg = other.g
|
||
|
Bi = other.i
|
||
|
Bj = other.j
|
||
|
Bk = other.k
|
||
|
self.a = Aa * Ba + Ab * Be + Ac * Bi
|
||
|
self.b = Aa * Bb + Ab * Bf + Ac * Bj
|
||
|
self.c = Aa * Bc + Ab * Bg + Ac * Bk
|
||
|
self.e = Ae * Ba + Af * Be + Ag * Bi
|
||
|
self.f = Ae * Bb + Af * Bf + Ag * Bj
|
||
|
self.g = Ae * Bc + Af * Bg + Ag * Bk
|
||
|
self.i = Ai * Ba + Aj * Be + Ak * Bi
|
||
|
self.j = Ai * Bb + Aj * Bf + Ak * Bj
|
||
|
self.k = Ai * Bc + Aj * Bg + Ak * Bk
|
||
|
return self
|
||
|
|
||
|
def identity(self):
|
||
|
self.a = self.f = self.k = 1.
|
||
|
self.b = self.c = self.e = self.g = self.i = self.j = 0
|
||
|
return self
|
||
|
|
||
|
def scale(self, x, y):
|
||
|
self *= Matrix3.new_scale(x, y)
|
||
|
return self
|
||
|
|
||
|
def translate(self, x, y):
|
||
|
self *= Matrix3.new_translate(x, y)
|
||
|
return self
|
||
|
|
||
|
def rotate(self, angle):
|
||
|
self *= Matrix3.new_rotate(angle)
|
||
|
return self
|
||
|
|
||
|
# Static constructors
|
||
|
def new_identity(cls):
|
||
|
self = cls()
|
||
|
return self
|
||
|
new_identity = classmethod(new_identity)
|
||
|
|
||
|
def new_scale(cls, x, y):
|
||
|
self = cls()
|
||
|
self.a = x
|
||
|
self.f = y
|
||
|
return self
|
||
|
new_scale = classmethod(new_scale)
|
||
|
|
||
|
def new_translate(cls, x, y):
|
||
|
self = cls()
|
||
|
self.c = x
|
||
|
self.g = y
|
||
|
return self
|
||
|
new_translate = classmethod(new_translate)
|
||
|
|
||
|
def new_rotate(cls, angle):
|
||
|
self = cls()
|
||
|
s = math.sin(angle)
|
||
|
c = math.cos(angle)
|
||
|
self.a = self.f = c
|
||
|
self.b = -s
|
||
|
self.e = s
|
||
|
return self
|
||
|
new_rotate = classmethod(new_rotate)
|
||
|
|
||
|
def determinant(self):
|
||
|
return (self.a*self.f*self.k
|
||
|
+ self.b*self.g*self.i
|
||
|
+ self.c*self.e*self.j
|
||
|
- self.a*self.g*self.j
|
||
|
- self.b*self.e*self.k
|
||
|
- self.c*self.f*self.i)
|
||
|
|
||
|
def inverse(self):
|
||
|
tmp = Matrix3()
|
||
|
d = self.determinant()
|
||
|
|
||
|
if abs(d) < 0.001:
|
||
|
# No inverse, return identity
|
||
|
return tmp
|
||
|
else:
|
||
|
d = 1.0 / d
|
||
|
|
||
|
tmp.a = d * (self.f*self.k - self.g*self.j)
|
||
|
tmp.b = d * (self.c*self.j - self.b*self.k)
|
||
|
tmp.c = d * (self.b*self.g - self.c*self.f)
|
||
|
tmp.e = d * (self.g*self.i - self.e*self.k)
|
||
|
tmp.f = d * (self.a*self.k - self.c*self.i)
|
||
|
tmp.g = d * (self.c*self.e - self.a*self.g)
|
||
|
tmp.i = d * (self.e*self.j - self.f*self.i)
|
||
|
tmp.j = d * (self.b*self.i - self.a*self.j)
|
||
|
tmp.k = d * (self.a*self.f - self.b*self.e)
|
||
|
|
||
|
return tmp
|
||
|
|
||
|
# a b c d
|
||
|
# e f g h
|
||
|
# i j k l
|
||
|
# m n o p
|
||
|
|
||
|
class Matrix4:
|
||
|
__slots__ = list('abcdefghijklmnop')
|
||
|
|
||
|
def __init__(self):
|
||
|
self.identity()
|
||
|
|
||
|
def __copy__(self):
|
||
|
M = Matrix4()
|
||
|
M.a = self.a
|
||
|
M.b = self.b
|
||
|
M.c = self.c
|
||
|
M.d = self.d
|
||
|
M.e = self.e
|
||
|
M.f = self.f
|
||
|
M.g = self.g
|
||
|
M.h = self.h
|
||
|
M.i = self.i
|
||
|
M.j = self.j
|
||
|
M.k = self.k
|
||
|
M.l = self.l
|
||
|
M.m = self.m
|
||
|
M.n = self.n
|
||
|
M.o = self.o
|
||
|
M.p = self.p
|
||
|
return M
|
||
|
|
||
|
copy = __copy__
|
||
|
|
||
|
|
||
|
def __repr__(self):
|
||
|
return ('Matrix4([% 8.2f % 8.2f % 8.2f % 8.2f\n' \
|
||
|
' % 8.2f % 8.2f % 8.2f % 8.2f\n' \
|
||
|
' % 8.2f % 8.2f % 8.2f % 8.2f\n' \
|
||
|
' % 8.2f % 8.2f % 8.2f % 8.2f])') \
|
||
|
% (self.a, self.b, self.c, self.d,
|
||
|
self.e, self.f, self.g, self.h,
|
||
|
self.i, self.j, self.k, self.l,
|
||
|
self.m, self.n, self.o, self.p)
|
||
|
|
||
|
def __getitem__(self, key):
|
||
|
return [self.a, self.e, self.i, self.m,
|
||
|
self.b, self.f, self.j, self.n,
|
||
|
self.c, self.g, self.k, self.o,
|
||
|
self.d, self.h, self.l, self.p][key]
|
||
|
|
||
|
def __setitem__(self, key, value):
|
||
|
L = self[:]
|
||
|
L[key] = value
|
||
|
(self.a, self.e, self.i, self.m,
|
||
|
self.b, self.f, self.j, self.n,
|
||
|
self.c, self.g, self.k, self.o,
|
||
|
self.d, self.h, self.l, self.p) = L
|
||
|
|
||
|
def __mul__(self, other):
|
||
|
if isinstance(other, Matrix4):
|
||
|
# Cache attributes in local vars (see Matrix3.__mul__).
|
||
|
Aa = self.a
|
||
|
Ab = self.b
|
||
|
Ac = self.c
|
||
|
Ad = self.d
|
||
|
Ae = self.e
|
||
|
Af = self.f
|
||
|
Ag = self.g
|
||
|
Ah = self.h
|
||
|
Ai = self.i
|
||
|
Aj = self.j
|
||
|
Ak = self.k
|
||
|
Al = self.l
|
||
|
Am = self.m
|
||
|
An = self.n
|
||
|
Ao = self.o
|
||
|
Ap = self.p
|
||
|
Ba = other.a
|
||
|
Bb = other.b
|
||
|
Bc = other.c
|
||
|
Bd = other.d
|
||
|
Be = other.e
|
||
|
Bf = other.f
|
||
|
Bg = other.g
|
||
|
Bh = other.h
|
||
|
Bi = other.i
|
||
|
Bj = other.j
|
||
|
Bk = other.k
|
||
|
Bl = other.l
|
||
|
Bm = other.m
|
||
|
Bn = other.n
|
||
|
Bo = other.o
|
||
|
Bp = other.p
|
||
|
C = Matrix4()
|
||
|
C.a = Aa * Ba + Ab * Be + Ac * Bi + Ad * Bm
|
||
|
C.b = Aa * Bb + Ab * Bf + Ac * Bj + Ad * Bn
|
||
|
C.c = Aa * Bc + Ab * Bg + Ac * Bk + Ad * Bo
|
||
|
C.d = Aa * Bd + Ab * Bh + Ac * Bl + Ad * Bp
|
||
|
C.e = Ae * Ba + Af * Be + Ag * Bi + Ah * Bm
|
||
|
C.f = Ae * Bb + Af * Bf + Ag * Bj + Ah * Bn
|
||
|
C.g = Ae * Bc + Af * Bg + Ag * Bk + Ah * Bo
|
||
|
C.h = Ae * Bd + Af * Bh + Ag * Bl + Ah * Bp
|
||
|
C.i = Ai * Ba + Aj * Be + Ak * Bi + Al * Bm
|
||
|
C.j = Ai * Bb + Aj * Bf + Ak * Bj + Al * Bn
|
||
|
C.k = Ai * Bc + Aj * Bg + Ak * Bk + Al * Bo
|
||
|
C.l = Ai * Bd + Aj * Bh + Ak * Bl + Al * Bp
|
||
|
C.m = Am * Ba + An * Be + Ao * Bi + Ap * Bm
|
||
|
C.n = Am * Bb + An * Bf + Ao * Bj + Ap * Bn
|
||
|
C.o = Am * Bc + An * Bg + Ao * Bk + Ap * Bo
|
||
|
C.p = Am * Bd + An * Bh + Ao * Bl + Ap * Bp
|
||
|
return C
|
||
|
elif isinstance(other, Point3):
|
||
|
A = self
|
||
|
B = other
|
||
|
P = Point3(0, 0, 0)
|
||
|
P.x = A.a * B.x + A.b * B.y + A.c * B.z + A.d
|
||
|
P.y = A.e * B.x + A.f * B.y + A.g * B.z + A.h
|
||
|
P.z = A.i * B.x + A.j * B.y + A.k * B.z + A.l
|
||
|
return P
|
||
|
elif isinstance(other, Vector3):
|
||
|
A = self
|
||
|
B = other
|
||
|
V = Vector3(0, 0, 0)
|
||
|
V.x = A.a * B.x + A.b * B.y + A.c * B.z
|
||
|
V.y = A.e * B.x + A.f * B.y + A.g * B.z
|
||
|
V.z = A.i * B.x + A.j * B.y + A.k * B.z
|
||
|
return V
|
||
|
else:
|
||
|
other = other.copy()
|
||
|
other._apply_transform(self)
|
||
|
return other
|
||
|
|
||
|
def __imul__(self, other):
|
||
|
assert isinstance(other, Matrix4)
|
||
|
# Cache attributes in local vars (see Matrix3.__mul__).
|
||
|
Aa = self.a
|
||
|
Ab = self.b
|
||
|
Ac = self.c
|
||
|
Ad = self.d
|
||
|
Ae = self.e
|
||
|
Af = self.f
|
||
|
Ag = self.g
|
||
|
Ah = self.h
|
||
|
Ai = self.i
|
||
|
Aj = self.j
|
||
|
Ak = self.k
|
||
|
Al = self.l
|
||
|
Am = self.m
|
||
|
An = self.n
|
||
|
Ao = self.o
|
||
|
Ap = self.p
|
||
|
Ba = other.a
|
||
|
Bb = other.b
|
||
|
Bc = other.c
|
||
|
Bd = other.d
|
||
|
Be = other.e
|
||
|
Bf = other.f
|
||
|
Bg = other.g
|
||
|
Bh = other.h
|
||
|
Bi = other.i
|
||
|
Bj = other.j
|
||
|
Bk = other.k
|
||
|
Bl = other.l
|
||
|
Bm = other.m
|
||
|
Bn = other.n
|
||
|
Bo = other.o
|
||
|
Bp = other.p
|
||
|
self.a = Aa * Ba + Ab * Be + Ac * Bi + Ad * Bm
|
||
|
self.b = Aa * Bb + Ab * Bf + Ac * Bj + Ad * Bn
|
||
|
self.c = Aa * Bc + Ab * Bg + Ac * Bk + Ad * Bo
|
||
|
self.d = Aa * Bd + Ab * Bh + Ac * Bl + Ad * Bp
|
||
|
self.e = Ae * Ba + Af * Be + Ag * Bi + Ah * Bm
|
||
|
self.f = Ae * Bb + Af * Bf + Ag * Bj + Ah * Bn
|
||
|
self.g = Ae * Bc + Af * Bg + Ag * Bk + Ah * Bo
|
||
|
self.h = Ae * Bd + Af * Bh + Ag * Bl + Ah * Bp
|
||
|
self.i = Ai * Ba + Aj * Be + Ak * Bi + Al * Bm
|
||
|
self.j = Ai * Bb + Aj * Bf + Ak * Bj + Al * Bn
|
||
|
self.k = Ai * Bc + Aj * Bg + Ak * Bk + Al * Bo
|
||
|
self.l = Ai * Bd + Aj * Bh + Ak * Bl + Al * Bp
|
||
|
self.m = Am * Ba + An * Be + Ao * Bi + Ap * Bm
|
||
|
self.n = Am * Bb + An * Bf + Ao * Bj + Ap * Bn
|
||
|
self.o = Am * Bc + An * Bg + Ao * Bk + Ap * Bo
|
||
|
self.p = Am * Bd + An * Bh + Ao * Bl + Ap * Bp
|
||
|
return self
|
||
|
|
||
|
def transform(self, other):
|
||
|
A = self
|
||
|
B = other
|
||
|
P = Point3(0, 0, 0)
|
||
|
P.x = A.a * B.x + A.b * B.y + A.c * B.z + A.d
|
||
|
P.y = A.e * B.x + A.f * B.y + A.g * B.z + A.h
|
||
|
P.z = A.i * B.x + A.j * B.y + A.k * B.z + A.l
|
||
|
w = A.m * B.x + A.n * B.y + A.o * B.z + A.p
|
||
|
if w != 0:
|
||
|
P.x /= w
|
||
|
P.y /= w
|
||
|
P.z /= w
|
||
|
return P
|
||
|
|
||
|
def identity(self):
|
||
|
self.a = self.f = self.k = self.p = 1.
|
||
|
self.b = self.c = self.d = self.e = self.g = self.h = \
|
||
|
self.i = self.j = self.l = self.m = self.n = self.o = 0
|
||
|
return self
|
||
|
|
||
|
def scale(self, x, y, z):
|
||
|
self *= Matrix4.new_scale(x, y, z)
|
||
|
return self
|
||
|
|
||
|
def translate(self, x, y, z):
|
||
|
self *= Matrix4.new_translate(x, y, z)
|
||
|
return self
|
||
|
|
||
|
def rotatex(self, angle):
|
||
|
self *= Matrix4.new_rotatex(angle)
|
||
|
return self
|
||
|
|
||
|
def rotatey(self, angle):
|
||
|
self *= Matrix4.new_rotatey(angle)
|
||
|
return self
|
||
|
|
||
|
def rotatez(self, angle):
|
||
|
self *= Matrix4.new_rotatez(angle)
|
||
|
return self
|
||
|
|
||
|
def rotate_axis(self, angle, axis):
|
||
|
self *= Matrix4.new_rotate_axis(angle, axis)
|
||
|
return self
|
||
|
|
||
|
def rotate_euler(self, heading, attitude, bank):
|
||
|
self *= Matrix4.new_rotate_euler(heading, attitude, bank)
|
||
|
return self
|
||
|
|
||
|
def rotate_triple_axis(self, x, y, z):
|
||
|
self *= Matrix4.new_rotate_triple_axis(x, y, z)
|
||
|
return self
|
||
|
|
||
|
def transpose(self):
|
||
|
(self.a, self.e, self.i, self.m,
|
||
|
self.b, self.f, self.j, self.n,
|
||
|
self.c, self.g, self.k, self.o,
|
||
|
self.d, self.h, self.l, self.p) = \
|
||
|
(self.a, self.b, self.c, self.d,
|
||
|
self.e, self.f, self.g, self.h,
|
||
|
self.i, self.j, self.k, self.l,
|
||
|
self.m, self.n, self.o, self.p)
|
||
|
|
||
|
def transposed(self):
|
||
|
M = self.copy()
|
||
|
M.transpose()
|
||
|
return M
|
||
|
|
||
|
# Static constructors
|
||
|
def new(cls, *values):
|
||
|
M = cls()
|
||
|
M[:] = values
|
||
|
return M
|
||
|
new = classmethod(new)
|
||
|
|
||
|
def new_identity(cls):
|
||
|
self = cls()
|
||
|
return self
|
||
|
new_identity = classmethod(new_identity)
|
||
|
|
||
|
def new_scale(cls, x, y, z):
|
||
|
self = cls()
|
||
|
self.a = x
|
||
|
self.f = y
|
||
|
self.k = z
|
||
|
return self
|
||
|
new_scale = classmethod(new_scale)
|
||
|
|
||
|
def new_translate(cls, x, y, z):
|
||
|
self = cls()
|
||
|
self.d = x
|
||
|
self.h = y
|
||
|
self.l = z
|
||
|
return self
|
||
|
new_translate = classmethod(new_translate)
|
||
|
|
||
|
def new_rotatex(cls, angle):
|
||
|
self = cls()
|
||
|
s = math.sin(angle)
|
||
|
c = math.cos(angle)
|
||
|
self.f = self.k = c
|
||
|
self.g = -s
|
||
|
self.j = s
|
||
|
return self
|
||
|
new_rotatex = classmethod(new_rotatex)
|
||
|
|
||
|
def new_rotatey(cls, angle):
|
||
|
self = cls()
|
||
|
s = math.sin(angle)
|
||
|
c = math.cos(angle)
|
||
|
self.a = self.k = c
|
||
|
self.c = s
|
||
|
self.i = -s
|
||
|
return self
|
||
|
new_rotatey = classmethod(new_rotatey)
|
||
|
|
||
|
def new_rotatez(cls, angle):
|
||
|
self = cls()
|
||
|
s = math.sin(angle)
|
||
|
c = math.cos(angle)
|
||
|
self.a = self.f = c
|
||
|
self.b = -s
|
||
|
self.e = s
|
||
|
return self
|
||
|
new_rotatez = classmethod(new_rotatez)
|
||
|
|
||
|
def new_rotate_axis(cls, angle, axis):
|
||
|
assert(isinstance(axis, Vector3))
|
||
|
vector = axis.normalized()
|
||
|
x = vector.x
|
||
|
y = vector.y
|
||
|
z = vector.z
|
||
|
|
||
|
self = cls()
|
||
|
s = math.sin(angle)
|
||
|
c = math.cos(angle)
|
||
|
c1 = 1. - c
|
||
|
|
||
|
# from the glRotate man page
|
||
|
self.a = x * x * c1 + c
|
||
|
self.b = x * y * c1 - z * s
|
||
|
self.c = x * z * c1 + y * s
|
||
|
self.e = y * x * c1 + z * s
|
||
|
self.f = y * y * c1 + c
|
||
|
self.g = y * z * c1 - x * s
|
||
|
self.i = x * z * c1 - y * s
|
||
|
self.j = y * z * c1 + x * s
|
||
|
self.k = z * z * c1 + c
|
||
|
return self
|
||
|
new_rotate_axis = classmethod(new_rotate_axis)
|
||
|
|
||
|
def new_rotate_euler(cls, heading, attitude, bank):
|
||
|
# from http://www.euclideanspace.com/
|
||
|
ch = math.cos(heading)
|
||
|
sh = math.sin(heading)
|
||
|
ca = math.cos(attitude)
|
||
|
sa = math.sin(attitude)
|
||
|
cb = math.cos(bank)
|
||
|
sb = math.sin(bank)
|
||
|
|
||
|
self = cls()
|
||
|
self.a = ch * ca
|
||
|
self.b = sh * sb - ch * sa * cb
|
||
|
self.c = ch * sa * sb + sh * cb
|
||
|
self.e = sa
|
||
|
self.f = ca * cb
|
||
|
self.g = -ca * sb
|
||
|
self.i = -sh * ca
|
||
|
self.j = sh * sa * cb + ch * sb
|
||
|
self.k = -sh * sa * sb + ch * cb
|
||
|
return self
|
||
|
new_rotate_euler = classmethod(new_rotate_euler)
|
||
|
|
||
|
def new_rotate_triple_axis(cls, x, y, z):
|
||
|
m = cls()
|
||
|
|
||
|
m.a, m.b, m.c = x.x, y.x, z.x
|
||
|
m.e, m.f, m.g = x.y, y.y, z.y
|
||
|
m.i, m.j, m.k = x.z, y.z, z.z
|
||
|
|
||
|
return m
|
||
|
new_rotate_triple_axis = classmethod(new_rotate_triple_axis)
|
||
|
|
||
|
def new_look_at(cls, eye, at, up):
|
||
|
z = (eye - at).normalized()
|
||
|
x = up.cross(z).normalized()
|
||
|
y = z.cross(x)
|
||
|
|
||
|
m = cls.new_rotate_triple_axis(x, y, z)
|
||
|
m.d, m.h, m.l = eye.x, eye.y, eye.z
|
||
|
return m
|
||
|
new_look_at = classmethod(new_look_at)
|
||
|
|
||
|
def new_perspective(cls, fov_y, aspect, near, far):
|
||
|
# from the gluPerspective man page
|
||
|
f = 1 / math.tan(fov_y / 2)
|
||
|
self = cls()
|
||
|
assert near != 0.0 and near != far
|
||
|
self.a = f / aspect
|
||
|
self.f = f
|
||
|
self.k = (far + near) / (near - far)
|
||
|
self.l = 2 * far * near / (near - far)
|
||
|
self.o = -1
|
||
|
self.p = 0
|
||
|
return self
|
||
|
new_perspective = classmethod(new_perspective)
|
||
|
|
||
|
def determinant(self):
|
||
|
return ((self.a * self.f - self.e * self.b)
|
||
|
* (self.k * self.p - self.o * self.l)
|
||
|
- (self.a * self.j - self.i * self.b)
|
||
|
* (self.g * self.p - self.o * self.h)
|
||
|
+ (self.a * self.n - self.m * self.b)
|
||
|
* (self.g * self.l - self.k * self.h)
|
||
|
+ (self.e * self.j - self.i * self.f)
|
||
|
* (self.c * self.p - self.o * self.d)
|
||
|
- (self.e * self.n - self.m * self.f)
|
||
|
* (self.c * self.l - self.k * self.d)
|
||
|
+ (self.i * self.n - self.m * self.j)
|
||
|
* (self.c * self.h - self.g * self.d))
|
||
|
|
||
|
def inverse(self):
|
||
|
tmp = Matrix4()
|
||
|
d = self.determinant();
|
||
|
|
||
|
if abs(d) < 0.001:
|
||
|
# No inverse, return identity
|
||
|
return tmp
|
||
|
else:
|
||
|
d = 1.0 / d;
|
||
|
|
||
|
tmp.a = d * (self.f * (self.k * self.p - self.o * self.l) + self.j * (self.o * self.h - self.g * self.p) + self.n * (self.g * self.l - self.k * self.h));
|
||
|
tmp.e = d * (self.g * (self.i * self.p - self.m * self.l) + self.k * (self.m * self.h - self.e * self.p) + self.o * (self.e * self.l - self.i * self.h));
|
||
|
tmp.i = d * (self.h * (self.i * self.n - self.m * self.j) + self.l * (self.m * self.f - self.e * self.n) + self.p * (self.e * self.j - self.i * self.f));
|
||
|
tmp.m = d * (self.e * (self.n * self.k - self.j * self.o) + self.i * (self.f * self.o - self.n * self.g) + self.m * (self.j * self.g - self.f * self.k));
|
||
|
|
||
|
tmp.b = d * (self.j * (self.c * self.p - self.o * self.d) + self.n * (self.k * self.d - self.c * self.l) + self.b * (self.o * self.l - self.k * self.p));
|
||
|
tmp.f = d * (self.k * (self.a * self.p - self.m * self.d) + self.o * (self.i * self.d - self.a * self.l) + self.c * (self.m * self.l - self.i * self.p));
|
||
|
tmp.j = d * (self.l * (self.a * self.n - self.m * self.b) + self.p * (self.i * self.b - self.a * self.j) + self.d * (self.m * self.j - self.i * self.n));
|
||
|
tmp.n = d * (self.i * (self.n * self.c - self.b * self.o) + self.m * (self.b * self.k - self.j * self.c) + self.a * (self.j * self.o - self.n * self.k));
|
||
|
|
||
|
tmp.c = d * (self.n * (self.c * self.h - self.g * self.d) + self.b * (self.g * self.p - self.o * self.h) + self.f * (self.o * self.d - self.c * self.p));
|
||
|
tmp.g = d * (self.o * (self.a * self.h - self.e * self.d) + self.c * (self.e * self.p - self.m * self.h) + self.g * (self.m * self.d - self.a * self.p));
|
||
|
tmp.k = d * (self.p * (self.a * self.f - self.e * self.b) + self.d * (self.e * self.n - self.m * self.f) + self.h * (self.m * self.b - self.a * self.n));
|
||
|
tmp.o = d * (self.m * (self.f * self.c - self.b * self.g) + self.a * (self.n * self.g - self.f * self.o) + self.e * (self.b * self.o - self.n * self.c));
|
||
|
|
||
|
tmp.d = d * (self.b * (self.k * self.h - self.g * self.l) + self.f * (self.c * self.l - self.k * self.d) + self.j * (self.g * self.d - self.c * self.h));
|
||
|
tmp.h = d * (self.c * (self.i * self.h - self.e * self.l) + self.g * (self.a * self.l - self.i * self.d) + self.k * (self.e * self.d - self.a * self.h));
|
||
|
tmp.l = d * (self.d * (self.i * self.f - self.e * self.j) + self.h * (self.a * self.j - self.i * self.b) + self.l * (self.e * self.b - self.a * self.f));
|
||
|
tmp.p = d * (self.a * (self.f * self.k - self.j * self.g) + self.e * (self.j * self.c - self.b * self.k) + self.i * (self.b * self.g - self.f * self.c));
|
||
|
|
||
|
return tmp;
|
||
|
|
||
|
|
||
|
class Quaternion:
|
||
|
# All methods and naming conventions based off
|
||
|
# http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions
|
||
|
|
||
|
# w is the real part, (x, y, z) are the imaginary parts
|
||
|
__slots__ = ['w', 'x', 'y', 'z']
|
||
|
|
||
|
def __init__(self, w=1, x=0, y=0, z=0):
|
||
|
self.w = w
|
||
|
self.x = x
|
||
|
self.y = y
|
||
|
self.z = z
|
||
|
|
||
|
def __copy__(self):
|
||
|
Q = Quaternion()
|
||
|
Q.w = self.w
|
||
|
Q.x = self.x
|
||
|
Q.y = self.y
|
||
|
Q.z = self.z
|
||
|
return Q
|
||
|
|
||
|
copy = __copy__
|
||
|
|
||
|
def __repr__(self):
|
||
|
return 'Quaternion(real=%.2f, imag=<%.2f, %.2f, %.2f>)' % \
|
||
|
(self.w, self.x, self.y, self.z)
|
||
|
|
||
|
def __mul__(self, other):
|
||
|
if isinstance(other, Quaternion):
|
||
|
Ax = self.x
|
||
|
Ay = self.y
|
||
|
Az = self.z
|
||
|
Aw = self.w
|
||
|
Bx = other.x
|
||
|
By = other.y
|
||
|
Bz = other.z
|
||
|
Bw = other.w
|
||
|
Q = Quaternion()
|
||
|
Q.x = Ax * Bw + Ay * Bz - Az * By + Aw * Bx
|
||
|
Q.y = -Ax * Bz + Ay * Bw + Az * Bx + Aw * By
|
||
|
Q.z = Ax * By - Ay * Bx + Az * Bw + Aw * Bz
|
||
|
Q.w = -Ax * Bx - Ay * By - Az * Bz + Aw * Bw
|
||
|
return Q
|
||
|
elif isinstance(other, Vector3):
|
||
|
w = self.w
|
||
|
x = self.x
|
||
|
y = self.y
|
||
|
z = self.z
|
||
|
Vx = other.x
|
||
|
Vy = other.y
|
||
|
Vz = other.z
|
||
|
ww = w * w
|
||
|
w2 = w * 2
|
||
|
wx2 = w2 * x
|
||
|
wy2 = w2 * y
|
||
|
wz2 = w2 * z
|
||
|
xx = x * x
|
||
|
x2 = x * 2
|
||
|
xy2 = x2 * y
|
||
|
xz2 = x2 * z
|
||
|
yy = y * y
|
||
|
yz2 = 2 * y * z
|
||
|
zz = z * z
|
||
|
return other.__class__(\
|
||
|
ww * Vx + wy2 * Vz - wz2 * Vy + \
|
||
|
xx * Vx + xy2 * Vy + xz2 * Vz - \
|
||
|
zz * Vx - yy * Vx,
|
||
|
xy2 * Vx + yy * Vy + yz2 * Vz + \
|
||
|
wz2 * Vx - zz * Vy + ww * Vy - \
|
||
|
wx2 * Vz - xx * Vy,
|
||
|
xz2 * Vx + yz2 * Vy + \
|
||
|
zz * Vz - wy2 * Vx - yy * Vz + \
|
||
|
wx2 * Vy - xx * Vz + ww * Vz)
|
||
|
else:
|
||
|
other = other.copy()
|
||
|
other._apply_transform(self)
|
||
|
return other
|
||
|
|
||
|
def __imul__(self, other):
|
||
|
assert isinstance(other, Quaternion)
|
||
|
Ax = self.x
|
||
|
Ay = self.y
|
||
|
Az = self.z
|
||
|
Aw = self.w
|
||
|
Bx = other.x
|
||
|
By = other.y
|
||
|
Bz = other.z
|
||
|
Bw = other.w
|
||
|
self.x = Ax * Bw + Ay * Bz - Az * By + Aw * Bx
|
||
|
self.y = -Ax * Bz + Ay * Bw + Az * Bx + Aw * By
|
||
|
self.z = Ax * By - Ay * Bx + Az * Bw + Aw * Bz
|
||
|
self.w = -Ax * Bx - Ay * By - Az * Bz + Aw * Bw
|
||
|
return self
|
||
|
|
||
|
def __abs__(self):
|
||
|
return math.sqrt(self.w ** 2 + \
|
||
|
self.x ** 2 + \
|
||
|
self.y ** 2 + \
|
||
|
self.z ** 2)
|
||
|
|
||
|
magnitude = __abs__
|
||
|
|
||
|
def magnitude_squared(self):
|
||
|
return self.w ** 2 + \
|
||
|
self.x ** 2 + \
|
||
|
self.y ** 2 + \
|
||
|
self.z ** 2
|
||
|
|
||
|
def identity(self):
|
||
|
self.w = 1
|
||
|
self.x = 0
|
||
|
self.y = 0
|
||
|
self.z = 0
|
||
|
return self
|
||
|
|
||
|
def rotate_axis(self, angle, axis):
|
||
|
self *= Quaternion.new_rotate_axis(angle, axis)
|
||
|
return self
|
||
|
|
||
|
def rotate_euler(self, heading, attitude, bank):
|
||
|
self *= Quaternion.new_rotate_euler(heading, attitude, bank)
|
||
|
return self
|
||
|
|
||
|
def rotate_matrix(self, m):
|
||
|
self *= Quaternion.new_rotate_matrix(m)
|
||
|
return self
|
||
|
|
||
|
def conjugated(self):
|
||
|
Q = Quaternion()
|
||
|
Q.w = self.w
|
||
|
Q.x = -self.x
|
||
|
Q.y = -self.y
|
||
|
Q.z = -self.z
|
||
|
return Q
|
||
|
|
||
|
def normalize(self):
|
||
|
d = self.magnitude()
|
||
|
if d != 0:
|
||
|
self.w /= d
|
||
|
self.x /= d
|
||
|
self.y /= d
|
||
|
self.z /= d
|
||
|
return self
|
||
|
|
||
|
def normalized(self):
|
||
|
d = self.magnitude()
|
||
|
if d != 0:
|
||
|
Q = Quaternion()
|
||
|
Q.w = self.w / d
|
||
|
Q.x = self.x / d
|
||
|
Q.y = self.y / d
|
||
|
Q.z = self.z / d
|
||
|
return Q
|
||
|
else:
|
||
|
return self.copy()
|
||
|
|
||
|
def get_angle_axis(self):
|
||
|
if self.w > 1:
|
||
|
self = self.normalized()
|
||
|
angle = 2 * math.acos(self.w)
|
||
|
s = math.sqrt(1 - self.w ** 2)
|
||
|
if s < 0.001:
|
||
|
return angle, Vector3(1, 0, 0)
|
||
|
else:
|
||
|
return angle, Vector3(self.x / s, self.y / s, self.z / s)
|
||
|
|
||
|
def get_euler(self):
|
||
|
t = self.x * self.y + self.z * self.w
|
||
|
if t > 0.4999:
|
||
|
heading = 2 * math.atan2(self.x, self.w)
|
||
|
attitude = math.pi / 2
|
||
|
bank = 0
|
||
|
elif t < -0.4999:
|
||
|
heading = -2 * math.atan2(self.x, self.w)
|
||
|
attitude = -math.pi / 2
|
||
|
bank = 0
|
||
|
else:
|
||
|
sqx = self.x ** 2
|
||
|
sqy = self.y ** 2
|
||
|
sqz = self.z ** 2
|
||
|
heading = math.atan2(2 * self.y * self.w - 2 * self.x * self.z,
|
||
|
1 - 2 * sqy - 2 * sqz)
|
||
|
attitude = math.asin(2 * t)
|
||
|
bank = math.atan2(2 * self.x * self.w - 2 * self.y * self.z,
|
||
|
1 - 2 * sqx - 2 * sqz)
|
||
|
return heading, attitude, bank
|
||
|
|
||
|
def get_matrix(self):
|
||
|
xx = self.x ** 2
|
||
|
xy = self.x * self.y
|
||
|
xz = self.x * self.z
|
||
|
xw = self.x * self.w
|
||
|
yy = self.y ** 2
|
||
|
yz = self.y * self.z
|
||
|
yw = self.y * self.w
|
||
|
zz = self.z ** 2
|
||
|
zw = self.z * self.w
|
||
|
M = Matrix4()
|
||
|
M.a = 1 - 2 * (yy + zz)
|
||
|
M.b = 2 * (xy - zw)
|
||
|
M.c = 2 * (xz + yw)
|
||
|
M.e = 2 * (xy + zw)
|
||
|
M.f = 1 - 2 * (xx + zz)
|
||
|
M.g = 2 * (yz - xw)
|
||
|
M.i = 2 * (xz - yw)
|
||
|
M.j = 2 * (yz + xw)
|
||
|
M.k = 1 - 2 * (xx + yy)
|
||
|
return M
|
||
|
|
||
|
# Static constructors
|
||
|
def new_identity(cls):
|
||
|
return cls()
|
||
|
new_identity = classmethod(new_identity)
|
||
|
|
||
|
def new_rotate_axis(cls, angle, axis):
|
||
|
assert(isinstance(axis, Vector3))
|
||
|
axis = axis.normalized()
|
||
|
s = math.sin(angle / 2)
|
||
|
Q = cls()
|
||
|
Q.w = math.cos(angle / 2)
|
||
|
Q.x = axis.x * s
|
||
|
Q.y = axis.y * s
|
||
|
Q.z = axis.z * s
|
||
|
return Q
|
||
|
new_rotate_axis = classmethod(new_rotate_axis)
|
||
|
|
||
|
def new_rotate_euler(cls, heading, attitude, bank):
|
||
|
Q = cls()
|
||
|
c1 = math.cos(heading / 2)
|
||
|
s1 = math.sin(heading / 2)
|
||
|
c2 = math.cos(attitude / 2)
|
||
|
s2 = math.sin(attitude / 2)
|
||
|
c3 = math.cos(bank / 2)
|
||
|
s3 = math.sin(bank / 2)
|
||
|
|
||
|
Q.w = c1 * c2 * c3 - s1 * s2 * s3
|
||
|
Q.x = s1 * s2 * c3 + c1 * c2 * s3
|
||
|
Q.y = s1 * c2 * c3 + c1 * s2 * s3
|
||
|
Q.z = c1 * s2 * c3 - s1 * c2 * s3
|
||
|
return Q
|
||
|
new_rotate_euler = classmethod(new_rotate_euler)
|
||
|
|
||
|
def new_rotate_matrix(cls, m):
|
||
|
if m[0*4 + 0] + m[1*4 + 1] + m[2*4 + 2] > 0.00000001:
|
||
|
t = m[0*4 + 0] + m[1*4 + 1] + m[2*4 + 2] + 1.0
|
||
|
s = 0.5/math.sqrt(t)
|
||
|
|
||
|
return cls(
|
||
|
s*t,
|
||
|
(m[1*4 + 2] - m[2*4 + 1])*s,
|
||
|
(m[2*4 + 0] - m[0*4 + 2])*s,
|
||
|
(m[0*4 + 1] - m[1*4 + 0])*s
|
||
|
)
|
||
|
|
||
|
elif m[0*4 + 0] > m[1*4 + 1] and m[0*4 + 0] > m[2*4 + 2]:
|
||
|
t = m[0*4 + 0] - m[1*4 + 1] - m[2*4 + 2] + 1.0
|
||
|
s = 0.5/math.sqrt(t)
|
||
|
|
||
|
return cls(
|
||
|
(m[1*4 + 2] - m[2*4 + 1])*s,
|
||
|
s*t,
|
||
|
(m[0*4 + 1] + m[1*4 + 0])*s,
|
||
|
(m[2*4 + 0] + m[0*4 + 2])*s
|
||
|
)
|
||
|
|
||
|
elif m[1*4 + 1] > m[2*4 + 2]:
|
||
|
t = -m[0*4 + 0] + m[1*4 + 1] - m[2*4 + 2] + 1.0
|
||
|
s = 0.5/math.sqrt(t)
|
||
|
|
||
|
return cls(
|
||
|
(m[2*4 + 0] - m[0*4 + 2])*s,
|
||
|
(m[0*4 + 1] + m[1*4 + 0])*s,
|
||
|
s*t,
|
||
|
(m[1*4 + 2] + m[2*4 + 1])*s
|
||
|
)
|
||
|
|
||
|
else:
|
||
|
t = -m[0*4 + 0] - m[1*4 + 1] + m[2*4 + 2] + 1.0
|
||
|
s = 0.5/math.sqrt(t)
|
||
|
|
||
|
return cls(
|
||
|
(m[0*4 + 1] - m[1*4 + 0])*s,
|
||
|
(m[2*4 + 0] + m[0*4 + 2])*s,
|
||
|
(m[1*4 + 2] + m[2*4 + 1])*s,
|
||
|
s*t
|
||
|
)
|
||
|
new_rotate_matrix = classmethod(new_rotate_matrix)
|
||
|
|
||
|
def new_interpolate(cls, q1, q2, t):
|
||
|
assert isinstance(q1, Quaternion) and isinstance(q2, Quaternion)
|
||
|
Q = cls()
|
||
|
|
||
|
costheta = q1.w * q2.w + q1.x * q2.x + q1.y * q2.y + q1.z * q2.z
|
||
|
if costheta < 0.:
|
||
|
costheta = -costheta
|
||
|
q1 = q1.conjugated()
|
||
|
elif costheta > 1:
|
||
|
costheta = 1
|
||
|
|
||
|
theta = math.acos(costheta)
|
||
|
if abs(theta) < 0.01:
|
||
|
Q.w = q2.w
|
||
|
Q.x = q2.x
|
||
|
Q.y = q2.y
|
||
|
Q.z = q2.z
|
||
|
return Q
|
||
|
|
||
|
sintheta = math.sqrt(1.0 - costheta * costheta)
|
||
|
if abs(sintheta) < 0.01:
|
||
|
Q.w = (q1.w + q2.w) * 0.5
|
||
|
Q.x = (q1.x + q2.x) * 0.5
|
||
|
Q.y = (q1.y + q2.y) * 0.5
|
||
|
Q.z = (q1.z + q2.z) * 0.5
|
||
|
return Q
|
||
|
|
||
|
ratio1 = math.sin((1 - t) * theta) / sintheta
|
||
|
ratio2 = math.sin(t * theta) / sintheta
|
||
|
|
||
|
Q.w = q1.w * ratio1 + q2.w * ratio2
|
||
|
Q.x = q1.x * ratio1 + q2.x * ratio2
|
||
|
Q.y = q1.y * ratio1 + q2.y * ratio2
|
||
|
Q.z = q1.z * ratio1 + q2.z * ratio2
|
||
|
return Q
|
||
|
new_interpolate = classmethod(new_interpolate)
|
||
|
|
||
|
# Geometry
|
||
|
# Much maths thanks to Paul Bourke, http://astronomy.swin.edu.au/~pbourke
|
||
|
# ---------------------------------------------------------------------------
|
||
|
|
||
|
class Geometry:
|
||
|
def _connect_unimplemented(self, other):
|
||
|
raise AttributeError, 'Cannot connect %s to %s' % \
|
||
|
(self.__class__, other.__class__)
|
||
|
|
||
|
def _intersect_unimplemented(self, other):
|
||
|
raise AttributeError, 'Cannot intersect %s and %s' % \
|
||
|
(self.__class__, other.__class__)
|
||
|
|
||
|
_intersect_point2 = _intersect_unimplemented
|
||
|
_intersect_line2 = _intersect_unimplemented
|
||
|
_intersect_circle = _intersect_unimplemented
|
||
|
_connect_point2 = _connect_unimplemented
|
||
|
_connect_line2 = _connect_unimplemented
|
||
|
_connect_circle = _connect_unimplemented
|
||
|
|
||
|
_intersect_point3 = _intersect_unimplemented
|
||
|
_intersect_line3 = _intersect_unimplemented
|
||
|
_intersect_sphere = _intersect_unimplemented
|
||
|
_intersect_plane = _intersect_unimplemented
|
||
|
_connect_point3 = _connect_unimplemented
|
||
|
_connect_line3 = _connect_unimplemented
|
||
|
_connect_sphere = _connect_unimplemented
|
||
|
_connect_plane = _connect_unimplemented
|
||
|
|
||
|
def intersect(self, other):
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def connect(self, other):
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def distance(self, other):
|
||
|
c = self.connect(other)
|
||
|
if c:
|
||
|
return c.length
|
||
|
return 0.0
|
||
|
|
||
|
def _intersect_point2_circle(P, C):
|
||
|
return abs(P - C.c) <= C.r
|
||
|
|
||
|
def _intersect_line2_line2(A, B):
|
||
|
d = B.v.y * A.v.x - B.v.x * A.v.y
|
||
|
if d == 0:
|
||
|
return None
|
||
|
|
||
|
dy = A.p.y - B.p.y
|
||
|
dx = A.p.x - B.p.x
|
||
|
ua = (B.v.x * dy - B.v.y * dx) / d
|
||
|
if not A._u_in(ua):
|
||
|
return None
|
||
|
ub = (A.v.x * dy - A.v.y * dx) / d
|
||
|
if not B._u_in(ub):
|
||
|
return None
|
||
|
|
||
|
return Point2(A.p.x + ua * A.v.x,
|
||
|
A.p.y + ua * A.v.y)
|
||
|
|
||
|
def _intersect_line2_circle(L, C):
|
||
|
a = L.v.magnitude_squared()
|
||
|
b = 2 * (L.v.x * (L.p.x - C.c.x) + \
|
||
|
L.v.y * (L.p.y - C.c.y))
|
||
|
c = C.c.magnitude_squared() + \
|
||
|
L.p.magnitude_squared() - \
|
||
|
2 * C.c.dot(L.p) - \
|
||
|
C.r ** 2
|
||
|
det = b ** 2 - 4 * a * c
|
||
|
if det < 0:
|
||
|
return None
|
||
|
sq = math.sqrt(det)
|
||
|
u1 = (-b + sq) / (2 * a)
|
||
|
u2 = (-b - sq) / (2 * a)
|
||
|
if not L._u_in(u1):
|
||
|
u1 = max(min(u1, 1.0), 0.0)
|
||
|
if not L._u_in(u2):
|
||
|
u2 = max(min(u2, 1.0), 0.0)
|
||
|
|
||
|
# Tangent
|
||
|
if u1 == u2:
|
||
|
return Point2(L.p.x + u1 * L.v.x,
|
||
|
L.p.y + u1 * L.v.y)
|
||
|
|
||
|
return LineSegment2(Point2(L.p.x + u1 * L.v.x,
|
||
|
L.p.y + u1 * L.v.y),
|
||
|
Point2(L.p.x + u2 * L.v.x,
|
||
|
L.p.y + u2 * L.v.y))
|
||
|
|
||
|
def _connect_point2_line2(P, L):
|
||
|
d = L.v.magnitude_squared()
|
||
|
assert d != 0
|
||
|
u = ((P.x - L.p.x) * L.v.x + \
|
||
|
(P.y - L.p.y) * L.v.y) / d
|
||
|
if not L._u_in(u):
|
||
|
u = max(min(u, 1.0), 0.0)
|
||
|
return LineSegment2(P,
|
||
|
Point2(L.p.x + u * L.v.x,
|
||
|
L.p.y + u * L.v.y))
|
||
|
|
||
|
def _connect_point2_circle(P, C):
|
||
|
v = P - C.c
|
||
|
v.normalize()
|
||
|
v *= C.r
|
||
|
return LineSegment2(P, Point2(C.c.x + v.x, C.c.y + v.y))
|
||
|
|
||
|
def _connect_line2_line2(A, B):
|
||
|
d = B.v.y * A.v.x - B.v.x * A.v.y
|
||
|
if d == 0:
|
||
|
# Parallel, connect an endpoint with a line
|
||
|
if isinstance(B, Ray2) or isinstance(B, LineSegment2):
|
||
|
p1, p2 = _connect_point2_line2(B.p, A)
|
||
|
return p2, p1
|
||
|
# No endpoint (or endpoint is on A), possibly choose arbitrary point
|
||
|
# on line.
|
||
|
return _connect_point2_line2(A.p, B)
|
||
|
|
||
|
dy = A.p.y - B.p.y
|
||
|
dx = A.p.x - B.p.x
|
||
|
ua = (B.v.x * dy - B.v.y * dx) / d
|
||
|
if not A._u_in(ua):
|
||
|
ua = max(min(ua, 1.0), 0.0)
|
||
|
ub = (A.v.x * dy - A.v.y * dx) / d
|
||
|
if not B._u_in(ub):
|
||
|
ub = max(min(ub, 1.0), 0.0)
|
||
|
|
||
|
return LineSegment2(Point2(A.p.x + ua * A.v.x, A.p.y + ua * A.v.y),
|
||
|
Point2(B.p.x + ub * B.v.x, B.p.y + ub * B.v.y))
|
||
|
|
||
|
def _connect_circle_line2(C, L):
|
||
|
d = L.v.magnitude_squared()
|
||
|
assert d != 0
|
||
|
u = ((C.c.x - L.p.x) * L.v.x + (C.c.y - L.p.y) * L.v.y) / d
|
||
|
if not L._u_in(u):
|
||
|
u = max(min(u, 1.0), 0.0)
|
||
|
point = Point2(L.p.x + u * L.v.x, L.p.y + u * L.v.y)
|
||
|
v = (point - C.c)
|
||
|
v.normalize()
|
||
|
v *= C.r
|
||
|
return LineSegment2(Point2(C.c.x + v.x, C.c.y + v.y), point)
|
||
|
|
||
|
def _connect_circle_circle(A, B):
|
||
|
v = B.c - A.c
|
||
|
v.normalize()
|
||
|
return LineSegment2(Point2(A.c.x + v.x * A.r, A.c.y + v.y * A.r),
|
||
|
Point2(B.c.x - v.x * B.r, B.c.y - v.y * B.r))
|
||
|
|
||
|
|
||
|
class Point2(Vector2, Geometry):
|
||
|
def __repr__(self):
|
||
|
return 'Point2(%.2f, %.2f)' % (self.x, self.y)
|
||
|
|
||
|
def intersect(self, other):
|
||
|
return other._intersect_point2(self)
|
||
|
|
||
|
def _intersect_circle(self, other):
|
||
|
return _intersect_point2_circle(self, other)
|
||
|
|
||
|
def connect(self, other):
|
||
|
return other._connect_point2(self)
|
||
|
|
||
|
def _connect_point2(self, other):
|
||
|
return LineSegment2(other, self)
|
||
|
|
||
|
def _connect_line2(self, other):
|
||
|
c = _connect_point2_line2(self, other)
|
||
|
if c:
|
||
|
return c._swap()
|
||
|
|
||
|
def _connect_circle(self, other):
|
||
|
c = _connect_point2_circle(self, other)
|
||
|
if c:
|
||
|
return c._swap()
|
||
|
|
||
|
class Line2(Geometry):
|
||
|
__slots__ = ['p', 'v']
|
||
|
|
||
|
def __init__(self, *args):
|
||
|
if len(args) == 3:
|
||
|
assert isinstance(args[0], Point2) and \
|
||
|
isinstance(args[1], Vector2) and \
|
||
|
type(args[2]) == float
|
||
|
self.p = args[0].copy()
|
||
|
self.v = args[1] * args[2] / abs(args[1])
|
||
|
elif len(args) == 2:
|
||
|
if isinstance(args[0], Point2) and isinstance(args[1], Point2):
|
||
|
self.p = args[0].copy()
|
||
|
self.v = args[1] - args[0]
|
||
|
elif isinstance(args[0], Point2) and isinstance(args[1], Vector2):
|
||
|
self.p = args[0].copy()
|
||
|
self.v = args[1].copy()
|
||
|
else:
|
||
|
raise AttributeError, '%r' % (args,)
|
||
|
elif len(args) == 1:
|
||
|
if isinstance(args[0], Line2):
|
||
|
self.p = args[0].p.copy()
|
||
|
self.v = args[0].v.copy()
|
||
|
else:
|
||
|
raise AttributeError, '%r' % (args,)
|
||
|
else:
|
||
|
raise AttributeError, '%r' % (args,)
|
||
|
|
||
|
if not self.v:
|
||
|
raise AttributeError, 'Line has zero-length vector'
|
||
|
|
||
|
def __copy__(self):
|
||
|
return self.__class__(self.p, self.v)
|
||
|
|
||
|
copy = __copy__
|
||
|
|
||
|
def __repr__(self):
|
||
|
return 'Line2(<%.2f, %.2f> + u<%.2f, %.2f>)' % \
|
||
|
(self.p.x, self.p.y, self.v.x, self.v.y)
|
||
|
|
||
|
p1 = property(lambda self: self.p)
|
||
|
p2 = property(lambda self: Point2(self.p.x + self.v.x,
|
||
|
self.p.y + self.v.y))
|
||
|
|
||
|
def _apply_transform(self, t):
|
||
|
self.p = t * self.p
|
||
|
self.v = t * self.v
|
||
|
|
||
|
def _u_in(self, u):
|
||
|
return True
|
||
|
|
||
|
def intersect(self, other):
|
||
|
return other._intersect_line2(self)
|
||
|
|
||
|
def _intersect_line2(self, other):
|
||
|
return _intersect_line2_line2(self, other)
|
||
|
|
||
|
def _intersect_circle(self, other):
|
||
|
return _intersect_line2_circle(self, other)
|
||
|
|
||
|
def connect(self, other):
|
||
|
return other._connect_line2(self)
|
||
|
|
||
|
def _connect_point2(self, other):
|
||
|
return _connect_point2_line2(other, self)
|
||
|
|
||
|
def _connect_line2(self, other):
|
||
|
return _connect_line2_line2(other, self)
|
||
|
|
||
|
def _connect_circle(self, other):
|
||
|
return _connect_circle_line2(other, self)
|
||
|
|
||
|
class Ray2(Line2):
|
||
|
def __repr__(self):
|
||
|
return 'Ray2(<%.2f, %.2f> + u<%.2f, %.2f>)' % \
|
||
|
(self.p.x, self.p.y, self.v.x, self.v.y)
|
||
|
|
||
|
def _u_in(self, u):
|
||
|
return u >= 0.0
|
||
|
|
||
|
class LineSegment2(Line2):
|
||
|
def __repr__(self):
|
||
|
return 'LineSegment2(<%.2f, %.2f> to <%.2f, %.2f>)' % \
|
||
|
(self.p.x, self.p.y, self.p.x + self.v.x, self.p.y + self.v.y)
|
||
|
|
||
|
def _u_in(self, u):
|
||
|
return u >= 0.0 and u <= 1.0
|
||
|
|
||
|
def __abs__(self):
|
||
|
return abs(self.v)
|
||
|
|
||
|
def magnitude_squared(self):
|
||
|
return self.v.magnitude_squared()
|
||
|
|
||
|
def _swap(self):
|
||
|
# used by connect methods to switch order of points
|
||
|
self.p = self.p2
|
||
|
self.v *= -1
|
||
|
return self
|
||
|
|
||
|
length = property(lambda self: abs(self.v))
|
||
|
|
||
|
class Circle(Geometry):
|
||
|
__slots__ = ['c', 'r']
|
||
|
|
||
|
def __init__(self, center, radius):
|
||
|
assert isinstance(center, Vector2) and type(radius) == float
|
||
|
self.c = center.copy()
|
||
|
self.r = radius
|
||
|
|
||
|
def __copy__(self):
|
||
|
return self.__class__(self.c, self.r)
|
||
|
|
||
|
copy = __copy__
|
||
|
|
||
|
def __repr__(self):
|
||
|
return 'Circle(<%.2f, %.2f>, radius=%.2f)' % \
|
||
|
(self.c.x, self.c.y, self.r)
|
||
|
|
||
|
def _apply_transform(self, t):
|
||
|
self.c = t * self.c
|
||
|
|
||
|
def intersect(self, other):
|
||
|
return other._intersect_circle(self)
|
||
|
|
||
|
def _intersect_point2(self, other):
|
||
|
return _intersect_point2_circle(other, self)
|
||
|
|
||
|
def _intersect_line2(self, other):
|
||
|
return _intersect_line2_circle(other, self)
|
||
|
|
||
|
def connect(self, other):
|
||
|
return other._connect_circle(self)
|
||
|
|
||
|
def _connect_point2(self, other):
|
||
|
return _connect_point2_circle(other, self)
|
||
|
|
||
|
def _connect_line2(self, other):
|
||
|
c = _connect_circle_line2(self, other)
|
||
|
if c:
|
||
|
return c._swap()
|
||
|
|
||
|
def _connect_circle(self, other):
|
||
|
return _connect_circle_circle(other, self)
|
||
|
|
||
|
# 3D Geometry
|
||
|
# -------------------------------------------------------------------------
|
||
|
|
||
|
def _connect_point3_line3(P, L):
|
||
|
d = L.v.magnitude_squared()
|
||
|
assert d != 0
|
||
|
u = ((P.x - L.p.x) * L.v.x + \
|
||
|
(P.y - L.p.y) * L.v.y + \
|
||
|
(P.z - L.p.z) * L.v.z) / d
|
||
|
if not L._u_in(u):
|
||
|
u = max(min(u, 1.0), 0.0)
|
||
|
return LineSegment3(P, Point3(L.p.x + u * L.v.x,
|
||
|
L.p.y + u * L.v.y,
|
||
|
L.p.z + u * L.v.z))
|
||
|
|
||
|
def _connect_point3_sphere(P, S):
|
||
|
v = P - S.c
|
||
|
v.normalize()
|
||
|
v *= S.r
|
||
|
return LineSegment3(P, Point3(S.c.x + v.x, S.c.y + v.y, S.c.z + v.z))
|
||
|
|
||
|
def _connect_point3_plane(p, plane):
|
||
|
n = plane.n.normalized()
|
||
|
d = p.dot(plane.n) - plane.k
|
||
|
return LineSegment3(p, Point3(p.x - n.x * d, p.y - n.y * d, p.z - n.z * d))
|
||
|
|
||
|
def _connect_line3_line3(A, B):
|
||
|
assert A.v and B.v
|
||
|
p13 = A.p - B.p
|
||
|
d1343 = p13.dot(B.v)
|
||
|
d4321 = B.v.dot(A.v)
|
||
|
d1321 = p13.dot(A.v)
|
||
|
d4343 = B.v.magnitude_squared()
|
||
|
denom = A.v.magnitude_squared() * d4343 - d4321 ** 2
|
||
|
if denom == 0:
|
||
|
# Parallel, connect an endpoint with a line
|
||
|
if isinstance(B, Ray3) or isinstance(B, LineSegment3):
|
||
|
return _connect_point3_line3(B.p, A)._swap()
|
||
|
# No endpoint (or endpoint is on A), possibly choose arbitrary
|
||
|
# point on line.
|
||
|
return _connect_point3_line3(A.p, B)
|
||
|
|
||
|
ua = (d1343 * d4321 - d1321 * d4343) / denom
|
||
|
if not A._u_in(ua):
|
||
|
ua = max(min(ua, 1.0), 0.0)
|
||
|
ub = (d1343 + d4321 * ua) / d4343
|
||
|
if not B._u_in(ub):
|
||
|
ub = max(min(ub, 1.0), 0.0)
|
||
|
return LineSegment3(Point3(A.p.x + ua * A.v.x,
|
||
|
A.p.y + ua * A.v.y,
|
||
|
A.p.z + ua * A.v.z),
|
||
|
Point3(B.p.x + ub * B.v.x,
|
||
|
B.p.y + ub * B.v.y,
|
||
|
B.p.z + ub * B.v.z))
|
||
|
|
||
|
def _connect_line3_plane(L, P):
|
||
|
d = P.n.dot(L.v)
|
||
|
if not d:
|
||
|
# Parallel, choose an endpoint
|
||
|
return _connect_point3_plane(L.p, P)
|
||
|
u = (P.k - P.n.dot(L.p)) / d
|
||
|
if not L._u_in(u):
|
||
|
# intersects out of range, choose nearest endpoint
|
||
|
u = max(min(u, 1.0), 0.0)
|
||
|
return _connect_point3_plane(Point3(L.p.x + u * L.v.x,
|
||
|
L.p.y + u * L.v.y,
|
||
|
L.p.z + u * L.v.z), P)
|
||
|
# Intersection
|
||
|
return None
|
||
|
|
||
|
def _connect_sphere_line3(S, L):
|
||
|
d = L.v.magnitude_squared()
|
||
|
assert d != 0
|
||
|
u = ((S.c.x - L.p.x) * L.v.x + \
|
||
|
(S.c.y - L.p.y) * L.v.y + \
|
||
|
(S.c.z - L.p.z) * L.v.z) / d
|
||
|
if not L._u_in(u):
|
||
|
u = max(min(u, 1.0), 0.0)
|
||
|
point = Point3(L.p.x + u * L.v.x, L.p.y + u * L.v.y, L.p.z + u * L.v.z)
|
||
|
v = (point - S.c)
|
||
|
v.normalize()
|
||
|
v *= S.r
|
||
|
return LineSegment3(Point3(S.c.x + v.x, S.c.y + v.y, S.c.z + v.z),
|
||
|
point)
|
||
|
|
||
|
def _connect_sphere_sphere(A, B):
|
||
|
v = B.c - A.c
|
||
|
v.normalize()
|
||
|
return LineSegment3(Point3(A.c.x + v.x * A.r,
|
||
|
A.c.y + v.y * A.r,
|
||
|
A.c.x + v.z * A.r),
|
||
|
Point3(B.c.x + v.x * B.r,
|
||
|
B.c.y + v.y * B.r,
|
||
|
B.c.x + v.z * B.r))
|
||
|
|
||
|
def _connect_sphere_plane(S, P):
|
||
|
c = _connect_point3_plane(S.c, P)
|
||
|
if not c:
|
||
|
return None
|
||
|
p2 = c.p2
|
||
|
v = p2 - S.c
|
||
|
v.normalize()
|
||
|
v *= S.r
|
||
|
return LineSegment3(Point3(S.c.x + v.x, S.c.y + v.y, S.c.z + v.z),
|
||
|
p2)
|
||
|
|
||
|
def _connect_plane_plane(A, B):
|
||
|
if A.n.cross(B.n):
|
||
|
# Planes intersect
|
||
|
return None
|
||
|
else:
|
||
|
# Planes are parallel, connect to arbitrary point
|
||
|
return _connect_point3_plane(A._get_point(), B)
|
||
|
|
||
|
def _intersect_point3_sphere(P, S):
|
||
|
return abs(P - S.c) <= S.r
|
||
|
|
||
|
def _intersect_line3_sphere(L, S):
|
||
|
a = L.v.magnitude_squared()
|
||
|
b = 2 * (L.v.x * (L.p.x - S.c.x) + \
|
||
|
L.v.y * (L.p.y - S.c.y) + \
|
||
|
L.v.z * (L.p.z - S.c.z))
|
||
|
c = S.c.magnitude_squared() + \
|
||
|
L.p.magnitude_squared() - \
|
||
|
2 * S.c.dot(L.p) - \
|
||
|
S.r ** 2
|
||
|
det = b ** 2 - 4 * a * c
|
||
|
if det < 0:
|
||
|
return None
|
||
|
sq = math.sqrt(det)
|
||
|
u1 = (-b + sq) / (2 * a)
|
||
|
u2 = (-b - sq) / (2 * a)
|
||
|
if not L._u_in(u1):
|
||
|
u1 = max(min(u1, 1.0), 0.0)
|
||
|
if not L._u_in(u2):
|
||
|
u2 = max(min(u2, 1.0), 0.0)
|
||
|
return LineSegment3(Point3(L.p.x + u1 * L.v.x,
|
||
|
L.p.y + u1 * L.v.y,
|
||
|
L.p.z + u1 * L.v.z),
|
||
|
Point3(L.p.x + u2 * L.v.x,
|
||
|
L.p.y + u2 * L.v.y,
|
||
|
L.p.z + u2 * L.v.z))
|
||
|
|
||
|
def _intersect_line3_plane(L, P):
|
||
|
d = P.n.dot(L.v)
|
||
|
if not d:
|
||
|
# Parallel
|
||
|
return None
|
||
|
u = (P.k - P.n.dot(L.p)) / d
|
||
|
if not L._u_in(u):
|
||
|
return None
|
||
|
return Point3(L.p.x + u * L.v.x,
|
||
|
L.p.y + u * L.v.y,
|
||
|
L.p.z + u * L.v.z)
|
||
|
|
||
|
def _intersect_plane_plane(A, B):
|
||
|
n1_m = A.n.magnitude_squared()
|
||
|
n2_m = B.n.magnitude_squared()
|
||
|
n1d2 = A.n.dot(B.n)
|
||
|
det = n1_m * n2_m - n1d2 ** 2
|
||
|
if det == 0:
|
||
|
# Parallel
|
||
|
return None
|
||
|
c1 = (A.k * n2_m - B.k * n1d2) / det
|
||
|
c2 = (B.k * n1_m - A.k * n1d2) / det
|
||
|
return Line3(Point3(c1 * A.n.x + c2 * B.n.x,
|
||
|
c1 * A.n.y + c2 * B.n.y,
|
||
|
c1 * A.n.z + c2 * B.n.z),
|
||
|
A.n.cross(B.n))
|
||
|
|
||
|
class Point3(Vector3, Geometry):
|
||
|
def __repr__(self):
|
||
|
return 'Point3(%.2f, %.2f, %.2f)' % (self.x, self.y, self.z)
|
||
|
|
||
|
def intersect(self, other):
|
||
|
return other._intersect_point3(self)
|
||
|
|
||
|
def _intersect_sphere(self, other):
|
||
|
return _intersect_point3_sphere(self, other)
|
||
|
|
||
|
def connect(self, other):
|
||
|
return other._connect_point3(self)
|
||
|
|
||
|
def _connect_point3(self, other):
|
||
|
if self != other:
|
||
|
return LineSegment3(other, self)
|
||
|
return None
|
||
|
|
||
|
def _connect_line3(self, other):
|
||
|
c = _connect_point3_line3(self, other)
|
||
|
if c:
|
||
|
return c._swap()
|
||
|
|
||
|
def _connect_sphere(self, other):
|
||
|
c = _connect_point3_sphere(self, other)
|
||
|
if c:
|
||
|
return c._swap()
|
||
|
|
||
|
def _connect_plane(self, other):
|
||
|
c = _connect_point3_plane(self, other)
|
||
|
if c:
|
||
|
return c._swap()
|
||
|
|
||
|
class Line3:
|
||
|
__slots__ = ['p', 'v']
|
||
|
|
||
|
def __init__(self, *args):
|
||
|
if len(args) == 3:
|
||
|
assert isinstance(args[0], Point3) and \
|
||
|
isinstance(args[1], Vector3) and \
|
||
|
type(args[2]) == float
|
||
|
self.p = args[0].copy()
|
||
|
self.v = args[1] * args[2] / abs(args[1])
|
||
|
elif len(args) == 2:
|
||
|
if isinstance(args[0], Point3) and isinstance(args[1], Point3):
|
||
|
self.p = args[0].copy()
|
||
|
self.v = args[1] - args[0]
|
||
|
elif isinstance(args[0], Point3) and isinstance(args[1], Vector3):
|
||
|
self.p = args[0].copy()
|
||
|
self.v = args[1].copy()
|
||
|
else:
|
||
|
raise AttributeError, '%r' % (args,)
|
||
|
elif len(args) == 1:
|
||
|
if isinstance(args[0], Line3):
|
||
|
self.p = args[0].p.copy()
|
||
|
self.v = args[0].v.copy()
|
||
|
else:
|
||
|
raise AttributeError, '%r' % (args,)
|
||
|
else:
|
||
|
raise AttributeError, '%r' % (args,)
|
||
|
|
||
|
# XXX This is annoying.
|
||
|
#if not self.v:
|
||
|
# raise AttributeError, 'Line has zero-length vector'
|
||
|
|
||
|
def __copy__(self):
|
||
|
return self.__class__(self.p, self.v)
|
||
|
|
||
|
copy = __copy__
|
||
|
|
||
|
def __repr__(self):
|
||
|
return 'Line3(<%.2f, %.2f, %.2f> + u<%.2f, %.2f, %.2f>)' % \
|
||
|
(self.p.x, self.p.y, self.p.z, self.v.x, self.v.y, self.v.z)
|
||
|
|
||
|
p1 = property(lambda self: self.p)
|
||
|
p2 = property(lambda self: Point3(self.p.x + self.v.x,
|
||
|
self.p.y + self.v.y,
|
||
|
self.p.z + self.v.z))
|
||
|
|
||
|
def _apply_transform(self, t):
|
||
|
self.p = t * self.p
|
||
|
self.v = t * self.v
|
||
|
|
||
|
def _u_in(self, u):
|
||
|
return True
|
||
|
|
||
|
def intersect(self, other):
|
||
|
return other._intersect_line3(self)
|
||
|
|
||
|
def _intersect_sphere(self, other):
|
||
|
return _intersect_line3_sphere(self, other)
|
||
|
|
||
|
def _intersect_plane(self, other):
|
||
|
return _intersect_line3_plane(self, other)
|
||
|
|
||
|
def connect(self, other):
|
||
|
return other._connect_line3(self)
|
||
|
|
||
|
def _connect_point3(self, other):
|
||
|
return _connect_point3_line3(other, self)
|
||
|
|
||
|
def _connect_line3(self, other):
|
||
|
return _connect_line3_line3(other, self)
|
||
|
|
||
|
def _connect_sphere(self, other):
|
||
|
return _connect_sphere_line3(other, self)
|
||
|
|
||
|
def _connect_plane(self, other):
|
||
|
c = _connect_line3_plane(self, other)
|
||
|
if c:
|
||
|
return c
|
||
|
|
||
|
class Ray3(Line3):
|
||
|
def __repr__(self):
|
||
|
return 'Ray3(<%.2f, %.2f, %.2f> + u<%.2f, %.2f, %.2f>)' % \
|
||
|
(self.p.x, self.p.y, self.p.z, self.v.x, self.v.y, self.v.z)
|
||
|
|
||
|
def _u_in(self, u):
|
||
|
return u >= 0.0
|
||
|
|
||
|
class LineSegment3(Line3):
|
||
|
def __repr__(self):
|
||
|
return 'LineSegment3(<%.2f, %.2f, %.2f> to <%.2f, %.2f, %.2f>)' % \
|
||
|
(self.p.x, self.p.y, self.p.z,
|
||
|
self.p.x + self.v.x, self.p.y + self.v.y, self.p.z + self.v.z)
|
||
|
|
||
|
def _u_in(self, u):
|
||
|
return u >= 0.0 and u <= 1.0
|
||
|
|
||
|
def __abs__(self):
|
||
|
return abs(self.v)
|
||
|
|
||
|
def magnitude_squared(self):
|
||
|
return self.v.magnitude_squared()
|
||
|
|
||
|
def _swap(self):
|
||
|
# used by connect methods to switch order of points
|
||
|
self.p = self.p2
|
||
|
self.v *= -1
|
||
|
return self
|
||
|
|
||
|
length = property(lambda self: abs(self.v))
|
||
|
|
||
|
class Sphere:
|
||
|
__slots__ = ['c', 'r']
|
||
|
|
||
|
def __init__(self, center, radius):
|
||
|
assert isinstance(center, Vector3) and type(radius) == float
|
||
|
self.c = center.copy()
|
||
|
self.r = radius
|
||
|
|
||
|
def __copy__(self):
|
||
|
return self.__class__(self.c, self.r)
|
||
|
|
||
|
copy = __copy__
|
||
|
|
||
|
def __repr__(self):
|
||
|
return 'Sphere(<%.2f, %.2f, %.2f>, radius=%.2f)' % \
|
||
|
(self.c.x, self.c.y, self.c.z, self.r)
|
||
|
|
||
|
def _apply_transform(self, t):
|
||
|
self.c = t * self.c
|
||
|
|
||
|
def intersect(self, other):
|
||
|
return other._intersect_sphere(self)
|
||
|
|
||
|
def _intersect_point3(self, other):
|
||
|
return _intersect_point3_sphere(other, self)
|
||
|
|
||
|
def _intersect_line3(self, other):
|
||
|
return _intersect_line3_sphere(other, self)
|
||
|
|
||
|
def connect(self, other):
|
||
|
return other._connect_sphere(self)
|
||
|
|
||
|
def _connect_point3(self, other):
|
||
|
return _connect_point3_sphere(other, self)
|
||
|
|
||
|
def _connect_line3(self, other):
|
||
|
c = _connect_sphere_line3(self, other)
|
||
|
if c:
|
||
|
return c._swap()
|
||
|
|
||
|
def _connect_sphere(self, other):
|
||
|
return _connect_sphere_sphere(other, self)
|
||
|
|
||
|
def _connect_plane(self, other):
|
||
|
c = _connect_sphere_plane(self, other)
|
||
|
if c:
|
||
|
return c
|
||
|
|
||
|
class Plane:
|
||
|
# n.p = k, where n is normal, p is point on plane, k is constant scalar
|
||
|
__slots__ = ['n', 'k']
|
||
|
|
||
|
def __init__(self, *args):
|
||
|
if len(args) == 3:
|
||
|
assert isinstance(args[0], Point3) and \
|
||
|
isinstance(args[1], Point3) and \
|
||
|
isinstance(args[2], Point3)
|
||
|
self.n = (args[1] - args[0]).cross(args[2] - args[0])
|
||
|
self.n.normalize()
|
||
|
self.k = self.n.dot(args[0])
|
||
|
elif len(args) == 2:
|
||
|
if isinstance(args[0], Point3) and isinstance(args[1], Vector3):
|
||
|
self.n = args[1].normalized()
|
||
|
self.k = self.n.dot(args[0])
|
||
|
elif isinstance(args[0], Vector3) and type(args[1]) == float:
|
||
|
self.n = args[0].normalized()
|
||
|
self.k = args[1]
|
||
|
else:
|
||
|
raise AttributeError, '%r' % (args,)
|
||
|
|
||
|
else:
|
||
|
raise AttributeError, '%r' % (args,)
|
||
|
|
||
|
if not self.n:
|
||
|
raise AttributeError, 'Points on plane are colinear'
|
||
|
|
||
|
def __copy__(self):
|
||
|
return self.__class__(self.n, self.k)
|
||
|
|
||
|
copy = __copy__
|
||
|
|
||
|
def __repr__(self):
|
||
|
return 'Plane(<%.2f, %.2f, %.2f>.p = %.2f)' % \
|
||
|
(self.n.x, self.n.y, self.n.z, self.k)
|
||
|
|
||
|
def _get_point(self):
|
||
|
# Return an arbitrary point on the plane
|
||
|
if self.n.z:
|
||
|
return Point3(0., 0., self.k / self.n.z)
|
||
|
elif self.n.y:
|
||
|
return Point3(0., self.k / self.n.y, 0.)
|
||
|
else:
|
||
|
return Point3(self.k / self.n.x, 0., 0.)
|
||
|
|
||
|
def _apply_transform(self, t):
|
||
|
p = t * self._get_point()
|
||
|
self.n = t * self.n
|
||
|
self.k = self.n.dot(p)
|
||
|
|
||
|
def intersect(self, other):
|
||
|
return other._intersect_plane(self)
|
||
|
|
||
|
def _intersect_line3(self, other):
|
||
|
return _intersect_line3_plane(other, self)
|
||
|
|
||
|
def _intersect_plane(self, other):
|
||
|
return _intersect_plane_plane(self, other)
|
||
|
|
||
|
def connect(self, other):
|
||
|
return other._connect_plane(self)
|
||
|
|
||
|
def _connect_point3(self, other):
|
||
|
return _connect_point3_plane(other, self)
|
||
|
|
||
|
def _connect_line3(self, other):
|
||
|
return _connect_line3_plane(other, self)
|
||
|
|
||
|
def _connect_sphere(self, other):
|
||
|
return _connect_sphere_plane(other, self)
|
||
|
|
||
|
def _connect_plane(self, other):
|
||
|
return _connect_plane_plane(other, self)
|