ardupilot/Tools/Linux_HAL_Essentials/pwmpru/pwmpru1.c

236 lines
5.5 KiB
C
Raw Normal View History

/*
* testpru
*
*/
#define PRU1
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <stdio.h>
#include <strings.h>
#include "linux_types.h"
#include "pru_defs.h"
#include "prucomm.h"
struct pwm_cmd_l cfg;
static void pwm_setup(void)
{
u8 i;
cfg.enmask = 0;
for (i = 0; i < MAX_PWMS; i++)
cfg.hilo[i][0] = cfg.hilo[i][1] = PRU_us(200);
}
static inline u32 read_PIEP_COUNT(void)
{
return PIEP_COUNT;
}
int main(int argc, char *argv[])
{
u8 i;
u32 cnt, next;
u32 msk, setmsk, clrmsk;
u32 delta, deltamin, tnext, hi, lo;
u32 *nextp;
const u32 *hilop;
u32 period;
u32 enmask; /* enable mask */
u32 stmask; /* state mask */
static u32 next_hi_lo[MAX_PWMS][3];
static struct cxt cxt;
/* enable OCP master port */
PRUCFG_SYSCFG &= ~SYSCFG_STANDBY_INIT;
PRUCFG_SYSCFG = (PRUCFG_SYSCFG &
~(SYSCFG_IDLE_MODE_M | SYSCFG_STANDBY_MODE_M)) |
SYSCFG_IDLE_MODE_NO | SYSCFG_STANDBY_MODE_NO;
/* our PRU wins arbitration */
PRUCFG_SPP |= SPP_PRU1_PAD_HP_EN;
pwm_setup();
/* configure timer */
PIEP_GLOBAL_CFG = GLOBAL_CFG_DEFAULT_INC(1) |
GLOBAL_CFG_CMP_INC(1);
PIEP_CMP_STATUS = CMD_STATUS_CMP_HIT(1); /* clear the interrupt */
PIEP_CMP_CMP1 = 0x0;
PIEP_CMP_CFG |= CMP_CFG_CMP_EN(1);
PIEP_GLOBAL_CFG |= GLOBAL_CFG_CNT_ENABLE;
/* initialize */
cnt = read_PIEP_COUNT();
enmask = cfg.enmask;
stmask = 0; /* starting all low */
clrmsk = 0;
for (i = 0, msk = 1, nextp = &next_hi_lo[0][0], hilop = &cfg.hilo[0][0];
i < MAX_PWMS;
i++, msk <<= 1, nextp += 3, hilop += 2) {
if ((enmask & msk) == 0) {
nextp[1] = PRU_us(100); /* default */
nextp[2] = PRU_us(100);
continue;
}
nextp[0] = cnt; /* next */
nextp[1] = 200000; /* hi */
nextp[2] = 208000; /* lo */
PWM_CMD->periodhi[i][0] = 408000;
PWM_CMD->periodhi[i][1] = 180000;
}
PWM_CMD->enmask = 0;
clrmsk = enmask;
setmsk = 0;
/* guaranteed to be immediate */
deltamin = 0;
next = cnt + deltamin;
PWM_CMD->magic = PWM_REPLY_MAGIC;
while(1) {
//if(PWM_CMD->magic == PWM_CMD_MAGIC)
{
msk = PWM_CMD->enmask;
for(i=0, nextp = &next_hi_lo[0][0]; i<MAX_PWMS;
i++, nextp += 3){
//Enable
if ((PWM_EN_MASK & (msk&(1U<<i))) && (enmask & (msk&(1U<<i))) == 0) {
enmask |= (msk&(1U<<i));
__R30 |= (msk&(1U<<i));
nextp[0] = cnt; //since we start high, wait this amount
// first enable
if (enmask == (msk&(1U<<i)))
cnt = read_PIEP_COUNT();
deltamin = 0;
next = cnt;
}
//Disable
if ((PWM_EN_MASK & (msk&(1U<<i))) && ((msk & ~(1U<<i)) == 0)) {
enmask &= ~(1U<<i);
__R30 &= ~(1U<<i);
}
//get and set pwm_vals
if (PWM_EN_MASK & (msk&(1U<<i))) {
//nextp = &next_hi_lo[i * 3];
nextp[1] = PWM_CMD->periodhi[i][1];
period = PWM_CMD->periodhi[i][0];
nextp[2] =period - nextp[1];
}
PWM_CMD->hilo_read[i][0] = nextp[0];
PWM_CMD->hilo_read[i][1] = nextp[1];
}
// guaranteed to be immediate
deltamin = 0;
PWM_CMD->magic = PWM_REPLY_MAGIC;
}
PWM_CMD->enmask_read = enmask;
/* if nothing is enabled just skip it all */
if (enmask == 0)
continue;
setmsk = 0;
clrmsk = (u32)-1;
deltamin = PRU_ms(100); /* (1U << 31) - 1; */
next = cnt + deltamin;
#define SINGLE_PWM(_i) \
do { \
if (enmask & (1U << (_i))) { \
nextp = &next_hi_lo[(_i)][0]; \
tnext = nextp[0]; \
hi = nextp[1]; \
lo = nextp[2]; \
/* avoid signed arithmetic */ \
while (((delta = (tnext - cnt)) & (1U << 31)) != 0) { \
/* toggle the state */ \
if (stmask & (1U << (_i))) { \
stmask &= ~(1U << (_i)); \
clrmsk &= ~(1U << (_i)); \
tnext += lo; \
} else { \
stmask |= (1U << (_i)); \
setmsk |= (1U << (_i)); \
tnext += hi; \
} \
} \
if (delta <= deltamin) { \
deltamin = delta; \
next = tnext; \
} \
nextp[0] = tnext; \
} \
} while (0)
#if MAX_PWMS > 0 && (PWM_EN_MASK & BIT(0))
SINGLE_PWM(0);
#endif
#if MAX_PWMS > 1 && (PWM_EN_MASK & BIT(1))
SINGLE_PWM(1);
#endif
#if MAX_PWMS > 2 && (PWM_EN_MASK & BIT(2))
SINGLE_PWM(2);
#endif
#if MAX_PWMS > 3 && (PWM_EN_MASK & BIT(3))
SINGLE_PWM(3);
#endif
#if MAX_PWMS > 4 && (PWM_EN_MASK & BIT(4))
SINGLE_PWM(4);
#endif
#if MAX_PWMS > 5 && (PWM_EN_MASK & BIT(5))
SINGLE_PWM(5);
#endif
#if MAX_PWMS > 6 && (PWM_EN_MASK & BIT(6))
SINGLE_PWM(6);
#endif
#if MAX_PWMS > 7 && (PWM_EN_MASK & BIT(7))
SINGLE_PWM(7);
#endif
#if MAX_PWMS > 8 && (PWM_EN_MASK & BIT(8))
SINGLE_PWM(8);
#endif
#if MAX_PWMS > 9 && (PWM_EN_MASK & BIT(9))
SINGLE_PWM(9);
#endif
#if MAX_PWMS > 10 && (PWM_EN_MASK & BIT(10))
SINGLE_PWM(10);
#endif
#if MAX_PWMS > 11 && (PWM_EN_MASK & BIT(11))
SINGLE_PWM(11);
#endif
#if MAX_PWMS > 12 && (PWM_EN_MASK & BIT(12))
SINGLE_PWM(12);
#endif
/* results in set bits where there are changes */
__R30 = (__R30 & (clrmsk & 0xfff)) | (setmsk & 0xfff);
/* loop while nothing changes */
do {
cnt = read_PIEP_COUNT();
if(PWM_CMD->magic == PWM_CMD_MAGIC){
break;
}
} while (((next - cnt) & (1U << 31)) == 0);
}
}