ardupilot/libraries/AP_Mount/AP_Mount.cpp

484 lines
16 KiB
C++
Raw Normal View History

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*-
#include <FastSerial.h>
#include <AP_Common.h>
#include <AP_Param.h>
#include <AP_Mount.h>
const AP_Param::GroupInfo AP_Mount::var_info[] PROGMEM = {
2012-07-03 18:36:34 -03:00
// @Param: MODE
// @DisplayName: Mount operation mode
// @Description: Camera or antenna mount operation mode
// @Values: 0:retract,1:neutral,2:MavLink_targeting,3:RC_targeting,4:GPS_point
// @User: Standard
AP_GROUPINFO("MODE", 0, AP_Mount, _mount_mode), // see MAV_MOUNT_MODE at ardupilotmega.h
// @Param: RETRACT
// @DisplayName: Mount retract angles
// @Description: Mount angles when in retract operation mode
// @Units: centi-Degrees
// @Range: -18000 17999
// @Increment: 1
2012-07-03 18:36:34 -03:00
// @User: Standard
AP_GROUPINFO("RETRACT", 1, AP_Mount, _retract_angles),
2012-07-03 18:36:34 -03:00
// @Param: NEUTRAL
// @DisplayName: Mount neutral angles
// @Description: Mount angles when in neutral operation mode
// @Units: centi-Degrees
// @Range: -18000 17999
// @Increment: 1
2012-07-03 18:36:34 -03:00
// @User: Standard
AP_GROUPINFO("NEUTRAL", 2, AP_Mount, _neutral_angles),
2012-07-03 18:36:34 -03:00
// @Param: CONTROL
// @DisplayName: Mount control angles
// @Description: Mount angles when in MavLink or RC control operation mode
// @Units: centi-Degrees
// @Range: -18000 17999
// @Increment: 1
2012-07-03 18:36:34 -03:00
// @User: Standard
AP_GROUPINFO("CONTROL", 3, AP_Mount, _control_angles),
2012-07-03 18:36:34 -03:00
// @Param: STAB_ROLL
// @DisplayName: Stabilize mount roll
// @Description:enable roll stabilisation relative to Earth
// @Values: 0:Disabled,1:Enabled
// @User: Standard
AP_GROUPINFO("STAB_ROLL", 4, AP_Mount, _stab_roll),
2012-07-03 18:36:34 -03:00
// @Param: STAB_PITCH
// @DisplayName: Stabilize mount pitch
// @Description: enable pitch/tilt stabilisation relative to Earth
// @Values: 0:Disabled,1:Enabled
// @User: Standard
AP_GROUPINFO("STAB_PITCH", 5, AP_Mount, _stab_pitch),
2012-07-03 18:36:34 -03:00
// @Param: STAB_YAW
// @DisplayName: Stabilize mount yaw
// @Description: enable yaw/pan stabilisation relative to Earth
// @Values: 0:Disabled,1:Enabled
// @User: Standard
AP_GROUPINFO("STAB_YAW", 6, AP_Mount, _stab_yaw),
AP_GROUPEND
};
extern RC_Channel_aux* g_rc_function[RC_Channel_aux::k_nr_aux_servo_functions]; // the aux. servo ch. assigned to each function
AP_Mount::AP_Mount(const struct Location *current_loc, GPS *&gps, AP_AHRS *ahrs):
_gps(gps)
{
_ahrs = ahrs;
_current_loc = current_loc;
// startup with the mount retracted
set_mode(MAV_MOUNT_MODE_RETRACT);
// default to zero angles
_retract_angles = Vector3f(0,0,0);
_neutral_angles = Vector3f(0,0,0);
_control_angles = Vector3f(0,0,0);
// default mount type to roll/pitch (which is the most common for copter)
_mount_type = k_tilt_roll;
// default manual rc channel to disabled
_manual_rc = NULL;
_manual_rc_function = AP_MOUNT_MANUAL_RC_FUNCTION_DISABLED;
}
// Auto-detect the mount gimbal type depending on the functions assigned to the servos
void AP_Mount::update_mount_type()
{
if ((g_rc_function[RC_Channel_aux::k_mount_roll] == NULL) && (g_rc_function[RC_Channel_aux::k_mount_pitch] != NULL) && (g_rc_function[RC_Channel_aux::k_mount_yaw] != NULL))
{
_mount_type = k_pan_tilt;
}
if ((g_rc_function[RC_Channel_aux::k_mount_roll] != NULL) && (g_rc_function[RC_Channel_aux::k_mount_pitch] != NULL) && (g_rc_function[RC_Channel_aux::k_mount_yaw] == NULL))
{
_mount_type = k_tilt_roll;
}
if ((g_rc_function[RC_Channel_aux::k_mount_roll] != NULL) && (g_rc_function[RC_Channel_aux::k_mount_pitch] != NULL) && (g_rc_function[RC_Channel_aux::k_mount_yaw] != NULL))
{
_mount_type = k_pan_tilt_roll;
}
}
//sets the servo angles for retraction, note angles are in degrees
void AP_Mount::set_retract_angles(float roll, float pitch, float yaw)
{
_retract_angles = Vector3f(roll, pitch, yaw);
}
//sets the servo angles for neutral, note angles are in degrees
void AP_Mount::set_neutral_angles(float roll, float pitch, float yaw)
{
_neutral_angles = Vector3f(roll, pitch, yaw);
}
//sets the servo angles for MAVLink, note angles are in degrees
void AP_Mount::set_control_angles(float roll, float pitch, float yaw)
{
_control_angles = Vector3f(roll, pitch, yaw);
}
// used to tell the mount to track GPS location
void AP_Mount::set_GPS_target_location(Location targetGPSLocation)
{
_target_GPS_location=targetGPSLocation;
}
// This one should be called periodically
void AP_Mount::update_mount_position()
{
switch((enum MAV_MOUNT_MODE)_mount_mode.get())
{
// move mount to a "retracted position" or to a position where a fourth servo can retract the entire mount into the fuselage
case MAV_MOUNT_MODE_RETRACT:
{
Vector3f vec = _retract_angles.get();
_roll_angle = vec.x;
_pitch_angle = vec.y;
_yaw_angle = vec.z;
break;
}
// move mount to a neutral position, typically pointing forward
case MAV_MOUNT_MODE_NEUTRAL:
{
Vector3f vec = _neutral_angles.get();
_roll_angle = vec.x;
_pitch_angle = vec.y;
_yaw_angle = vec.z;
break;
}
// point to the angles given by a mavlink message
case MAV_MOUNT_MODE_MAVLINK_TARGETING:
{
Vector3f vec = _control_angles.get();
_roll_control_angle = radians(vec.x);
_pitch_control_angle = radians(vec.y);
_yaw_control_angle = radians(vec.z);
stabilize();
break;
}
// RC radio manual angle control, but with stabilization from the AHRS
case MAV_MOUNT_MODE_RC_TARGETING:
{
//#define MNT_SPRING_LOADED_JOYSTICK
#ifdef MNT_SPRING_LOADED_JOYSTICK
// rc_input() takes degrees * 100 units
G_RC_AUX(k_mount_roll)->rc_input(&_roll_control_angle, _roll_angle*100);
G_RC_AUX(k_mount_pitch)->rc_input(&_pitch_control_angle, _pitch_angle*100);
G_RC_AUX(k_mount_yaw)->rc_input(&_yaw_control_angle, _yaw_angle*100);
#else
// allow pilot input to come directly from an RC_Channel
if( _manual_rc != NULL ) {
float manual_angle = radians((float)(4500 - _manual_rc->control_in ) / 100.0);
switch( _manual_rc_function ) {
case AP_MOUNT_MANUAL_RC_FUNCTION_ROLL:
_roll_control_angle = manual_angle;
break;
case AP_MOUNT_MANUAL_RC_FUNCTION_PITCH:
_pitch_control_angle = manual_angle;
break;
case AP_MOUNT_MANUAL_RC_FUNCTION_YAW:
_yaw_control_angle = manual_angle;
break;
default:
// do nothing
break;
}
}else{
// take pilot's input from RC_Channel_aux
if (g_rc_function[RC_Channel_aux::k_mount_roll])
_roll_control_angle = g_rc_function[RC_Channel_aux::k_mount_roll]->angle_input_rad();
if (g_rc_function[RC_Channel_aux::k_mount_pitch])
_pitch_control_angle = g_rc_function[RC_Channel_aux::k_mount_pitch]->angle_input_rad();
if (g_rc_function[RC_Channel_aux::k_mount_yaw])
_yaw_control_angle = g_rc_function[RC_Channel_aux::k_mount_yaw]->angle_input_rad();
}
#endif
stabilize();
break;
}
// point mount to a GPS point given by the mission planner
case MAV_MOUNT_MODE_GPS_POINT:
{
if(_gps->fix){
calc_GPS_target_angle(&_target_GPS_location);
stabilize();
}
break;
}
default:
//do nothing
break;
}
// write the results to the servos
// closest_limit() takes degrees * 10 units
G_RC_AUX(k_mount_roll)->closest_limit(_roll_angle*10);
G_RC_AUX(k_mount_pitch)->closest_limit(_pitch_angle*10);
G_RC_AUX(k_mount_yaw)->closest_limit(_yaw_angle*10);
}
void AP_Mount::set_mode(enum MAV_MOUNT_MODE mode)
{
_mount_mode = (int8_t)mode;
}
// Change the configuration of the mount
// triggered by a MavLink packet.
void AP_Mount::configure_msg(mavlink_message_t* msg)
{
__mavlink_mount_configure_t packet;
mavlink_msg_mount_configure_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component)) {
// not for us
return;
}
set_mode((enum MAV_MOUNT_MODE)packet.mount_mode);
_stab_pitch = packet.stab_pitch;
_stab_roll = packet.stab_roll;
_stab_yaw = packet.stab_yaw;
}
// Control the mount (depends on the previously set mount configuration)
// triggered by a MavLink packet.
void AP_Mount::control_msg(mavlink_message_t *msg)
{
__mavlink_mount_control_t packet;
mavlink_msg_mount_control_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component)) {
// not for us
return;
}
switch ((enum MAV_MOUNT_MODE)_mount_mode.get())
{
case MAV_MOUNT_MODE_RETRACT: // Load and keep safe position (Roll,Pitch,Yaw) from EEPROM and stop stabilization
set_retract_angles(packet.input_b*0.01, packet.input_a*0.01, packet.input_c*0.01);
if (packet.save_position)
{
_retract_angles.save();
}
break;
case MAV_MOUNT_MODE_NEUTRAL: // Load and keep neutral position (Roll,Pitch,Yaw) from EEPROM
set_neutral_angles(packet.input_b*0.01, packet.input_a*0.01, packet.input_c*0.01);
if (packet.save_position)
{
_neutral_angles.save();
}
break;
case MAV_MOUNT_MODE_MAVLINK_TARGETING: // Load neutral position and start MAVLink Roll,Pitch,Yaw control with stabilization
set_control_angles(packet.input_b*0.01, packet.input_a*0.01, packet.input_c*0.01);
break;
case MAV_MOUNT_MODE_RC_TARGETING: // Load neutral position and start RC Roll,Pitch,Yaw control with stabilization
{
Vector3f vec = _neutral_angles.get();
_roll_angle = vec.x;
_pitch_angle = vec.y;
_yaw_angle = vec.z;
}
break;
case MAV_MOUNT_MODE_GPS_POINT: // Load neutral position and start to point to Lat,Lon,Alt
Location targetGPSLocation;
targetGPSLocation.lat = packet.input_a;
targetGPSLocation.lng = packet.input_b;
targetGPSLocation.alt = packet.input_c;
set_GPS_target_location(targetGPSLocation);
break;
case MAV_MOUNT_MODE_ENUM_END:
break;
default:
// do nothing
break;
}
}
// Return mount status information (depends on the previously set mount configuration)
// triggered by a MavLink packet.
void AP_Mount::status_msg(mavlink_message_t *msg)
{
__mavlink_mount_status_t packet;
mavlink_msg_mount_status_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component)) {
// not for us
return;
}
switch ((enum MAV_MOUNT_MODE)_mount_mode.get())
{
case MAV_MOUNT_MODE_RETRACT: // safe position (Roll,Pitch,Yaw) from EEPROM and stop stabilization
case MAV_MOUNT_MODE_NEUTRAL: // neutral position (Roll,Pitch,Yaw) from EEPROM
case MAV_MOUNT_MODE_MAVLINK_TARGETING: // neutral position and start MAVLink Roll,Pitch,Yaw control with stabilization
case MAV_MOUNT_MODE_RC_TARGETING: // neutral position and start RC Roll,Pitch,Yaw control with stabilization
packet.pointing_b = _roll_angle*100; ///< degrees*100
packet.pointing_a = _pitch_angle*100; ///< degrees*100
packet.pointing_c = _yaw_angle*100; ///< degrees*100
break;
case MAV_MOUNT_MODE_GPS_POINT: // neutral position and start to point to Lat,Lon,Alt
packet.pointing_a = _target_GPS_location.lat; ///< latitude
packet.pointing_b = _target_GPS_location.lng; ///< longitude
packet.pointing_c = _target_GPS_location.alt; ///< altitude
break;
case MAV_MOUNT_MODE_ENUM_END:
break;
}
// status reply
// TODO: is COMM_3 correct ?
mavlink_msg_mount_status_send(MAVLINK_COMM_3, packet.target_system, packet.target_component,
packet.pointing_a, packet.pointing_b, packet.pointing_c);
}
// Set mount point/region of interest, triggered by mission script commands
void AP_Mount::set_roi_cmd(struct Location *target_loc)
{
// set the target gps location
_target_GPS_location = *target_loc;
// set the mode to GPS tracking mode
set_mode(MAV_MOUNT_MODE_GPS_POINT);
}
// Set mount configuration, triggered by mission script commands
void AP_Mount::configure_cmd()
{
// TODO get the information out of the mission command and use it
}
// Control the mount (depends on the previously set mount configuration), triggered by mission script commands
void AP_Mount::control_cmd()
{
// TODO get the information out of the mission command and use it
}
void
AP_Mount::calc_GPS_target_angle(struct Location *target)
{
float GPS_vector_x = (target->lng-_current_loc->lng)*cos(ToRad((_current_loc->lat+target->lat)/(t7*2.0)))*.01113195;
float GPS_vector_y = (target->lat-_current_loc->lat)*.01113195;
float GPS_vector_z = (target->alt-_current_loc->alt); // baro altitude(IN CM) should be adjusted to known home elevation before take off (Set altimeter).
float target_distance = 100.0*sqrt(GPS_vector_x*GPS_vector_x + GPS_vector_y*GPS_vector_y); // Careful , centimeters here locally. Baro/alt is in cm, lat/lon is in meters.
_roll_control_angle = 0;
_pitch_control_angle = atan2(GPS_vector_z, target_distance);
_yaw_control_angle = atan2(GPS_vector_x, GPS_vector_y);
/*
// Converts +/- 180 into 0-360.
if(_yaw_control_angle<0){
_yaw_control_angle += 2*M_PI;
}
*/
}
/// Stabilizes mount relative to the Earth's frame
/// Inputs:
/// _roll_control_angle desired roll angle in radians,
/// _pitch_control_angle desired pitch/tilt angle in radians,
/// _yaw_control_angle desired yaw/pan angle in radians
/// Outputs:
/// _roll_angle stabilized roll angle in degrees,
/// _pitch_angle stabilized pitch/tilt angle in degrees,
/// _yaw_angle stabilized yaw/pan angle in degrees
void
AP_Mount::stabilize()
{
if (_ahrs) {
// only do the full 3D frame transform if we are doing yaw control
if (_stab_yaw) {
Matrix3f m; ///< holds 3 x 3 matrix, var is used as temp in calcs
Matrix3f cam; ///< Rotation matrix earth to camera. Desired camera from input.
Matrix3f gimbal_target; ///< Rotation matrix from plane to camera. Then Euler angles to the servos.
m = _ahrs->get_dcm_matrix();
m.transpose();
cam.from_euler(_roll_control_angle, _pitch_control_angle, _yaw_control_angle);
gimbal_target = m * cam;
gimbal_target.to_euler(&_roll_angle, &_pitch_angle, &_yaw_angle);
_roll_angle = _stab_roll?degrees(_roll_angle):degrees(_roll_control_angle);
_pitch_angle = _stab_pitch?degrees(_pitch_angle):degrees(_pitch_control_angle);
_yaw_angle = degrees(_yaw_angle);
} else {
// otherwise base mount roll and pitch on the ahrs
// roll/pitch attitude, plus any requested angle
_roll_angle = degrees(_roll_control_angle);
_pitch_angle = degrees(_pitch_control_angle);
_yaw_angle = degrees(_yaw_control_angle);
if (_stab_roll) {
_roll_angle -= degrees(_ahrs->roll);
}
if (_stab_pitch) {
_pitch_angle -= degrees(_ahrs->pitch);
}
}
} else {
_roll_angle = degrees(_roll_control_angle);
_pitch_angle = degrees(_pitch_control_angle);
_yaw_angle = degrees(_yaw_control_angle);
}
}
// set_manual_rc_channel - define which RC_Channel is to be used for manual control
void
AP_Mount::set_manual_rc_channel(RC_Channel* rc)
{
_manual_rc = rc;
}
// set_manual_rc_channel_function - set whether manual rc channel is disabled, controls roll (1), pitch (2) or yaw (3).
void
AP_Mount::set_manual_rc_channel_function(int8_t fn)
{
// update scaler if the function has changed
if( _manual_rc_function != fn ) {
_manual_rc_function = fn;
// ensure pilot's input appears in the range 0 ~ 9000 ( 90 degrees * 100 ). We will subtract 45 degrees later to make the range +-45 degrees
if( _manual_rc != NULL && fn != AP_MOUNT_MANUAL_RC_FUNCTION_DISABLED ) {
_manual_rc->set_range( 0, 9000 );
}
}
}
// For testing and development. Called in the medium loop.
void
AP_Mount::debug_output()
{ Serial3.print("current - ");
Serial3.print("lat ");
Serial3.print(_current_loc->lat);
Serial3.print(",lon ");
Serial3.print(_current_loc->lng);
Serial3.print(",alt ");
Serial3.println(_current_loc->alt);
Serial3.print("gps - ");
Serial3.print("lat ");
Serial3.print(_gps->latitude);
Serial3.print(",lon ");
Serial3.print(_gps->longitude);
Serial3.print(",alt ");
Serial3.print(_gps->altitude);
Serial3.println();
Serial3.print("target - ");
Serial3.print("lat ");
Serial3.print(_target_GPS_location.lat);
Serial3.print(",lon ");
Serial3.print(_target_GPS_location.lng);
Serial3.print(",alt ");
Serial3.print(_target_GPS_location.alt);
Serial3.print(" hdg to targ ");
Serial3.print(degrees(_yaw_control_angle));
Serial3.println();
}