mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-14 20:58:30 -04:00
371 lines
13 KiB
Plaintext
371 lines
13 KiB
Plaintext
|
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
||
|
|
||
|
//****************************************************************
|
||
|
// Function that controls aileron/rudder, elevator, rudder (if 4 channel control) and throttle to produce desired attitude and airspeed.
|
||
|
//****************************************************************
|
||
|
|
||
|
static void stabilize()
|
||
|
{
|
||
|
float ch1_inf = 1.0;
|
||
|
float ch2_inf = 1.0;
|
||
|
float ch4_inf = 1.0;
|
||
|
float speed_scaler;
|
||
|
|
||
|
if (g.airspeed_enabled == true){
|
||
|
if(airspeed > 0)
|
||
|
speed_scaler = (STANDARD_SPEED * 100) / airspeed;
|
||
|
else
|
||
|
speed_scaler = 2.0;
|
||
|
speed_scaler = constrain(speed_scaler, 0.5, 2.0);
|
||
|
} else {
|
||
|
if (g.channel_throttle.servo_out > 0){
|
||
|
speed_scaler = 0.5 + ((float)THROTTLE_CRUISE / g.channel_throttle.servo_out / 2.0); // First order taylor expansion of square root
|
||
|
// Should maybe be to the 2/7 power, but we aren't goint to implement that...
|
||
|
}else{
|
||
|
speed_scaler = 1.67;
|
||
|
}
|
||
|
speed_scaler = constrain(speed_scaler, 0.6, 1.67); // This case is constrained tighter as we don't have real speed info
|
||
|
}
|
||
|
|
||
|
if(crash_timer > 0){
|
||
|
nav_roll = 0;
|
||
|
}
|
||
|
|
||
|
if (inverted_flight) {
|
||
|
// we want to fly upside down. We need to cope with wrap of
|
||
|
// the roll_sensor interfering with wrap of nav_roll, which
|
||
|
// would really confuse the PID code. The easiest way to
|
||
|
// handle this is to ensure both go in the same direction from
|
||
|
// zero
|
||
|
nav_roll += 18000;
|
||
|
if (dcm.roll_sensor < 0) nav_roll -= 36000;
|
||
|
}
|
||
|
|
||
|
// For Testing Only
|
||
|
// roll_sensor = (radio_in[CH_RUDDER] - radio_trim[CH_RUDDER]) * 10;
|
||
|
// Serial.printf_P(PSTR(" roll_sensor "));
|
||
|
// Serial.print(roll_sensor,DEC);
|
||
|
|
||
|
// Calculate dersired servo output for the roll
|
||
|
// ---------------------------------------------
|
||
|
g.channel_roll.servo_out = g.pidServoRoll.get_pid((nav_roll - dcm.roll_sensor), delta_ms_fast_loop, speed_scaler);
|
||
|
long tempcalc = nav_pitch +
|
||
|
fabs(dcm.roll_sensor * g.kff_pitch_compensation) +
|
||
|
(g.channel_throttle.servo_out * g.kff_throttle_to_pitch) -
|
||
|
(dcm.pitch_sensor - g.pitch_trim);
|
||
|
if (inverted_flight) {
|
||
|
// when flying upside down the elevator control is inverted
|
||
|
tempcalc = -tempcalc;
|
||
|
}
|
||
|
g.channel_pitch.servo_out = g.pidServoPitch.get_pid(tempcalc, delta_ms_fast_loop, speed_scaler);
|
||
|
|
||
|
// Mix Stick input to allow users to override control surfaces
|
||
|
// -----------------------------------------------------------
|
||
|
if ((control_mode < FLY_BY_WIRE_A) || (ENABLE_STICK_MIXING == 1 && control_mode > FLY_BY_WIRE_B)) {
|
||
|
|
||
|
|
||
|
// TODO: use RC_Channel control_mix function?
|
||
|
ch1_inf = (float)g.channel_roll.radio_in - (float)g.channel_roll.radio_trim;
|
||
|
ch1_inf = fabs(ch1_inf);
|
||
|
ch1_inf = min(ch1_inf, 400.0);
|
||
|
ch1_inf = ((400.0 - ch1_inf) /400.0);
|
||
|
|
||
|
ch2_inf = (float)g.channel_pitch.radio_in - g.channel_pitch.radio_trim;
|
||
|
ch2_inf = fabs(ch2_inf);
|
||
|
ch2_inf = min(ch2_inf, 400.0);
|
||
|
ch2_inf = ((400.0 - ch2_inf) /400.0);
|
||
|
|
||
|
// scale the sensor input based on the stick input
|
||
|
// -----------------------------------------------
|
||
|
g.channel_roll.servo_out *= ch1_inf;
|
||
|
g.channel_pitch.servo_out *= ch2_inf;
|
||
|
|
||
|
// Mix in stick inputs
|
||
|
// -------------------
|
||
|
g.channel_roll.servo_out += g.channel_roll.pwm_to_angle();
|
||
|
g.channel_pitch.servo_out += g.channel_pitch.pwm_to_angle();
|
||
|
|
||
|
//Serial.printf_P(PSTR(" servo_out[CH_ROLL] "));
|
||
|
//Serial.println(servo_out[CH_ROLL],DEC);
|
||
|
}
|
||
|
|
||
|
// stick mixing performed for rudder for all cases including FBW unless disabled for higher modes
|
||
|
// important for steering on the ground during landing
|
||
|
// -----------------------------------------------
|
||
|
if (control_mode <= FLY_BY_WIRE_B || ENABLE_STICK_MIXING == 1) {
|
||
|
ch4_inf = (float)g.channel_rudder.radio_in - (float)g.channel_rudder.radio_trim;
|
||
|
ch4_inf = fabs(ch4_inf);
|
||
|
ch4_inf = min(ch4_inf, 400.0);
|
||
|
ch4_inf = ((400.0 - ch4_inf) /400.0);
|
||
|
}
|
||
|
|
||
|
// Apply output to Rudder
|
||
|
// ----------------------
|
||
|
calc_nav_yaw(speed_scaler);
|
||
|
g.channel_rudder.servo_out *= ch4_inf;
|
||
|
g.channel_rudder.servo_out += g.channel_rudder.pwm_to_angle();
|
||
|
|
||
|
// Call slew rate limiter if used
|
||
|
// ------------------------------
|
||
|
//#if(ROLL_SLEW_LIMIT != 0)
|
||
|
// g.channel_roll.servo_out = roll_slew_limit(g.channel_roll.servo_out);
|
||
|
//#endif
|
||
|
}
|
||
|
|
||
|
static void crash_checker()
|
||
|
{
|
||
|
if(dcm.pitch_sensor < -4500){
|
||
|
crash_timer = 255;
|
||
|
}
|
||
|
if(crash_timer > 0)
|
||
|
crash_timer--;
|
||
|
}
|
||
|
|
||
|
|
||
|
static void calc_throttle()
|
||
|
{
|
||
|
if (g.airspeed_enabled == false) {
|
||
|
int throttle_target = g.throttle_cruise + throttle_nudge;
|
||
|
|
||
|
// no airspeed sensor, we use nav pitch to determine the proper throttle output
|
||
|
// AUTO, RTL, etc
|
||
|
// ---------------------------------------------------------------------------
|
||
|
if (nav_pitch >= 0) {
|
||
|
g.channel_throttle.servo_out = throttle_target + (g.throttle_max - throttle_target) * nav_pitch / g.pitch_limit_max;
|
||
|
} else {
|
||
|
g.channel_throttle.servo_out = throttle_target - (throttle_target - g.throttle_min) * nav_pitch / g.pitch_limit_min;
|
||
|
}
|
||
|
|
||
|
g.channel_throttle.servo_out = constrain(g.channel_throttle.servo_out, g.throttle_min.get(), g.throttle_max.get());
|
||
|
} else {
|
||
|
// throttle control with airspeed compensation
|
||
|
// -------------------------------------------
|
||
|
energy_error = airspeed_energy_error + (float)altitude_error * 0.098f;
|
||
|
|
||
|
// positive energy errors make the throttle go higher
|
||
|
g.channel_throttle.servo_out = g.throttle_cruise + g.pidTeThrottle.get_pid(energy_error, dTnav);
|
||
|
g.channel_throttle.servo_out += (g.channel_pitch.servo_out * g.kff_pitch_to_throttle);
|
||
|
|
||
|
g.channel_throttle.servo_out = constrain(g.channel_throttle.servo_out,
|
||
|
g.throttle_min.get(), g.throttle_max.get()); // TODO - resolve why "saved" is used here versus "current"
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
/*****************************************
|
||
|
* Calculate desired roll/pitch/yaw angles (in medium freq loop)
|
||
|
*****************************************/
|
||
|
|
||
|
// Yaw is separated into a function for future implementation of heading hold on rolling take-off
|
||
|
// ----------------------------------------------------------------------------------------
|
||
|
static void calc_nav_yaw(float speed_scaler)
|
||
|
{
|
||
|
#if HIL_MODE != HIL_MODE_ATTITUDE
|
||
|
Vector3f temp = imu.get_accel();
|
||
|
long error = -temp.y;
|
||
|
|
||
|
// Control is a feedforward from the aileron control + a PID to coordinate the turn (drive y axis accel to zero)
|
||
|
g.channel_rudder.servo_out = g.kff_rudder_mix * g.channel_roll.servo_out + g.pidServoRudder.get_pid(error, delta_ms_fast_loop, speed_scaler);
|
||
|
#else
|
||
|
g.channel_rudder.servo_out = g.kff_rudder_mix * g.channel_roll.servo_out;
|
||
|
// XXX probably need something here based on heading
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
|
||
|
static void calc_nav_pitch()
|
||
|
{
|
||
|
// Calculate the Pitch of the plane
|
||
|
// --------------------------------
|
||
|
if (g.airspeed_enabled == true) {
|
||
|
nav_pitch = -g.pidNavPitchAirspeed.get_pid(airspeed_error, dTnav);
|
||
|
} else {
|
||
|
nav_pitch = g.pidNavPitchAltitude.get_pid(altitude_error, dTnav);
|
||
|
}
|
||
|
nav_pitch = constrain(nav_pitch, g.pitch_limit_min.get(), g.pitch_limit_max.get());
|
||
|
}
|
||
|
|
||
|
|
||
|
#define YAW_DAMPENER 0
|
||
|
|
||
|
static void calc_nav_roll()
|
||
|
{
|
||
|
|
||
|
// Adjust gain based on ground speed - We need lower nav gain going in to a headwind, etc.
|
||
|
// This does not make provisions for wind speed in excess of airframe speed
|
||
|
nav_gain_scaler = (float)g_gps->ground_speed / (STANDARD_SPEED * 100.0);
|
||
|
nav_gain_scaler = constrain(nav_gain_scaler, 0.2, 1.4);
|
||
|
|
||
|
// negative error = left turn
|
||
|
// positive error = right turn
|
||
|
// Calculate the required roll of the plane
|
||
|
// ----------------------------------------
|
||
|
nav_roll = g.pidNavRoll.get_pid(bearing_error, dTnav, nav_gain_scaler); //returns desired bank angle in degrees*100
|
||
|
nav_roll = constrain(nav_roll, -g.roll_limit.get(), g.roll_limit.get());
|
||
|
|
||
|
Vector3f omega;
|
||
|
omega = dcm.get_gyro();
|
||
|
|
||
|
// rate limiter
|
||
|
long rate = degrees(omega.z) * 100; // 3rad = 17188 , 6rad = 34377
|
||
|
rate = constrain(rate, -6000, 6000); // limit input
|
||
|
int dampener = rate * YAW_DAMPENER; // 34377 * .175 = 6000
|
||
|
|
||
|
// add in yaw dampener
|
||
|
nav_roll -= dampener;
|
||
|
nav_roll = constrain(nav_roll, -g.roll_limit.get(), g.roll_limit.get());
|
||
|
}
|
||
|
|
||
|
|
||
|
/*****************************************
|
||
|
* Roll servo slew limit
|
||
|
*****************************************/
|
||
|
/*
|
||
|
float roll_slew_limit(float servo)
|
||
|
{
|
||
|
static float last;
|
||
|
float temp = constrain(servo, last-ROLL_SLEW_LIMIT * delta_ms_fast_loop/1000.f, last + ROLL_SLEW_LIMIT * delta_ms_fast_loop/1000.f);
|
||
|
last = servo;
|
||
|
return temp;
|
||
|
}*/
|
||
|
|
||
|
/*****************************************
|
||
|
* Throttle slew limit
|
||
|
*****************************************/
|
||
|
static void throttle_slew_limit()
|
||
|
{
|
||
|
static int last = 1000;
|
||
|
if(g.throttle_slewrate) { // if slew limit rate is set to zero then do not slew limit
|
||
|
|
||
|
float temp = g.throttle_slewrate * G_Dt * 10.f; // * 10 to scale % to pwm range of 1000 to 2000
|
||
|
Serial.print("radio "); Serial.print(g.channel_throttle.radio_out); Serial.print(" temp "); Serial.print(temp); Serial.print(" last "); Serial.println(last);
|
||
|
g.channel_throttle.radio_out = constrain(g.channel_throttle.radio_out, last - (int)temp, last + (int)temp);
|
||
|
last = g.channel_throttle.radio_out;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
// Zeros out navigation Integrators if we are changing mode, have passed a waypoint, etc.
|
||
|
// Keeps outdated data out of our calculations
|
||
|
static void reset_I(void)
|
||
|
{
|
||
|
g.pidNavRoll.reset_I();
|
||
|
g.pidNavPitchAirspeed.reset_I();
|
||
|
g.pidNavPitchAltitude.reset_I();
|
||
|
g.pidTeThrottle.reset_I();
|
||
|
// g.pidAltitudeThrottle.reset_I();
|
||
|
}
|
||
|
|
||
|
/*****************************************
|
||
|
* Set the flight control servos based on the current calculated values
|
||
|
*****************************************/
|
||
|
static void set_servos(void)
|
||
|
{
|
||
|
int flapSpeedSource = 0;
|
||
|
|
||
|
if(control_mode == MANUAL){
|
||
|
// do a direct pass through of radio values
|
||
|
if (g.mix_mode == 0){
|
||
|
g.channel_roll.radio_out = g.channel_roll.radio_in;
|
||
|
g.channel_pitch.radio_out = g.channel_pitch.radio_in;
|
||
|
} else {
|
||
|
g.channel_roll.radio_out = APM_RC.InputCh(CH_ROLL);
|
||
|
g.channel_pitch.radio_out = APM_RC.InputCh(CH_PITCH);
|
||
|
}
|
||
|
g.channel_throttle.radio_out = g.channel_throttle.radio_in;
|
||
|
g.channel_rudder.radio_out = g.channel_rudder.radio_in;
|
||
|
if (g.rc_5_funct == RC_5_FUNCT_AILERON) g.rc_5.radio_out = g.rc_5.radio_in;
|
||
|
if (g.rc_6_funct == RC_6_FUNCT_AILERON) g.rc_6.radio_out = g.rc_6.radio_in;
|
||
|
|
||
|
} else {
|
||
|
if (g.mix_mode == 0) {
|
||
|
g.channel_roll.calc_pwm();
|
||
|
g.channel_pitch.calc_pwm();
|
||
|
g.channel_rudder.calc_pwm();
|
||
|
if (g.rc_5_funct == RC_5_FUNCT_AILERON) {
|
||
|
g.rc_5.servo_out = g.channel_roll.servo_out;
|
||
|
g.rc_5.calc_pwm();
|
||
|
}
|
||
|
if (g.rc_6_funct == RC_6_FUNCT_AILERON) {
|
||
|
g.rc_6.servo_out = g.channel_roll.servo_out;
|
||
|
g.rc_6.calc_pwm();
|
||
|
}
|
||
|
|
||
|
}else{
|
||
|
/*Elevon mode*/
|
||
|
float ch1;
|
||
|
float ch2;
|
||
|
ch1 = BOOL_TO_SIGN(g.reverse_elevons) * (g.channel_pitch.servo_out - g.channel_roll.servo_out);
|
||
|
ch2 = g.channel_pitch.servo_out + g.channel_roll.servo_out;
|
||
|
g.channel_roll.radio_out = elevon1_trim + (BOOL_TO_SIGN(g.reverse_ch1_elevon) * (ch1 * 500.0/ SERVO_MAX));
|
||
|
g.channel_pitch.radio_out = elevon2_trim + (BOOL_TO_SIGN(g.reverse_ch2_elevon) * (ch2 * 500.0/ SERVO_MAX));
|
||
|
}
|
||
|
|
||
|
#if THROTTLE_OUT == 0
|
||
|
g.channel_throttle.servo_out = 0;
|
||
|
#else
|
||
|
// convert 0 to 100% into PWM
|
||
|
g.channel_throttle.servo_out = constrain(g.channel_throttle.servo_out, g.throttle_min.get(), g.throttle_max.get());
|
||
|
#endif
|
||
|
|
||
|
g.channel_throttle.calc_pwm();
|
||
|
|
||
|
/* TO DO - fix this for RC_Channel library
|
||
|
#if THROTTLE_REVERSE == 1
|
||
|
radio_out[CH_THROTTLE] = radio_max(CH_THROTTLE) + radio_min(CH_THROTTLE) - radio_out[CH_THROTTLE];
|
||
|
#endif
|
||
|
*/
|
||
|
|
||
|
throttle_slew_limit();
|
||
|
}
|
||
|
|
||
|
if(control_mode <= FLY_BY_WIRE_B) {
|
||
|
if (g.rc_5_funct == RC_5_FUNCT_FLAP_AUTO) g.rc_5.radio_out = g.rc_5.radio_in;
|
||
|
if (g.rc_6_funct == RC_6_FUNCT_FLAP_AUTO) g.rc_6.radio_out = g.rc_6.radio_in;
|
||
|
} else if (control_mode >= FLY_BY_WIRE_C) {
|
||
|
if (g.airspeed_enabled == true) {
|
||
|
flapSpeedSource = g.airspeed_cruise;
|
||
|
} else {
|
||
|
flapSpeedSource = g.throttle_cruise;
|
||
|
}
|
||
|
if ( flapSpeedSource > g.flap_1_speed) {
|
||
|
if(g.rc_5_funct == RC_5_FUNCT_FLAP_AUTO) g.rc_5.servo_out = 0;
|
||
|
if(g.rc_6_funct == RC_6_FUNCT_FLAP_AUTO) g.rc_6.servo_out = 0;
|
||
|
} else if (flapSpeedSource > g.flap_2_speed) {
|
||
|
if(g.rc_5_funct == RC_5_FUNCT_FLAP_AUTO) g.rc_5.servo_out = g.flap_1_percent;
|
||
|
if(g.rc_6_funct == RC_6_FUNCT_FLAP_AUTO) g.rc_6.servo_out = g.flap_1_percent;
|
||
|
} else {
|
||
|
if(g.rc_5_funct == RC_5_FUNCT_FLAP_AUTO) g.rc_5.servo_out = g.flap_2_percent;
|
||
|
if(g.rc_6_funct == RC_6_FUNCT_FLAP_AUTO) g.rc_6.servo_out = g.flap_2_percent;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#if HIL_MODE == HIL_MODE_DISABLED || HIL_SERVOS
|
||
|
// send values to the PWM timers for output
|
||
|
// ----------------------------------------
|
||
|
APM_RC.OutputCh(CH_1, g.channel_roll.radio_out); // send to Servos
|
||
|
APM_RC.OutputCh(CH_2, g.channel_pitch.radio_out); // send to Servos
|
||
|
APM_RC.OutputCh(CH_3, g.channel_throttle.radio_out); // send to Servos
|
||
|
APM_RC.OutputCh(CH_4, g.channel_rudder.radio_out); // send to Servos
|
||
|
APM_RC.OutputCh(CH_5, g.rc_5.radio_out); // send to Servos
|
||
|
APM_RC.OutputCh(CH_6, g.rc_6.radio_out); // send to Servos
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
static void demo_servos(byte i) {
|
||
|
|
||
|
while(i > 0){
|
||
|
gcs.send_text_P(SEVERITY_LOW,PSTR("Demo Servos!"));
|
||
|
#if HIL_MODE == HIL_MODE_DISABLED || HIL_SERVOS
|
||
|
APM_RC.OutputCh(1, 1400);
|
||
|
mavlink_delay(400);
|
||
|
APM_RC.OutputCh(1, 1600);
|
||
|
mavlink_delay(200);
|
||
|
APM_RC.OutputCh(1, 1500);
|
||
|
#endif
|
||
|
mavlink_delay(400);
|
||
|
i--;
|
||
|
}
|
||
|
}
|
||
|
|