ardupilot/libraries/AP_RC_Channel/AP_RC_Channel.cpp

333 lines
8.8 KiB
C++
Raw Normal View History

/*
AP_RC_Channel.cpp - Radio library for Arduino Legacy Hardware
Code by Jason Short. DIYDrones.com
Improvements to implement channel curves by Ron Curry, 2012
This library is free software; you can redistribute it and / or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
*/
#include <math.h>
#include <avr/eeprom.h>
#if defined(ARDUINO) && ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
#include "AP_RC_Channel.h"
#define ANGLE 0
#define RANGE 1
// setup the control preferences
void
AP_RC_Channel::set_range(int low, int high)
{
_type = RANGE;
_high = high;
_low = low;
}
void
AP_RC_Channel::set_angle(int angle)
{
_type = ANGLE;
_high = angle;
}
void
AP_RC_Channel::set_reverse(bool reverse)
{
if (reverse) _reverse = -1;
else _reverse = 1;
}
bool
AP_RC_Channel::get_reverse(void)
{
if (_reverse==-1) return 1;
else return 0;
}
void
AP_RC_Channel::set_filter(bool filter)
{
_filter = filter;
}
// call after first read
void
AP_RC_Channel::trim()
{
radio_trim = radio_in;
}
//-------------------------------------------------------------------------------
// Support for PWM translation (i.e. curves or "expo")
//
// Translation of the input PWM is done via a pointer "channel_curve" to an array that defines the PWM output value
// for any given input value. The array is structured with element 0 equal to the number of elements
// in the curve. If the length is zero then the array defines no curve. If the "channel_curve" pointer
// is NULL that is interpretted as no curve defined and is the default state.
//
// Elements 1 to n of the array contain the values for the curve. These are defined in terms of the actual
// PWM output pulsewidth desired for a given point on the curve with curve element 1 containing the value
// for the lowest input value from the RC RX and element "n" containing the value for the highest input value
// from the RX.
//
// Input PWM values are expected to be in the range of the radio calibration values "radio_min" to "radio_max". The
// user must have already completed the radio calibration otherwise output will be inaccurage. Input PWM values
// generate an index that falls between curve elements will cause the output to be interpolated in a linear fashion
// between the curve elements. For example: A curve defined as element 0 = 2 (length), element 1 = 900, and
// element 2 = 2100 would define a linear straight line output between 900 and 2100 for valid input values.
// Additional elements could be inserted between element 1 and element 2 to define more complex
// curves. - R. Curry 06-14-12
// Sets curve for channel output to user defined curve
// Input: curve - A pointer to a user defined output curve for this channel
void
AP_RC_Channel::set_channel_curve(int *curve)
{
_channel_curve = curve; // Channel_curve points to array containing curve info
}
// Unsets the curve for this channel - i.e. no curve translation
void
AP_RC_Channel::unset_channel_curve()
{
_channel_curve = NULL;
}
// Apply the current curve to a PWM value
// Input: PWM value in range of radio_min to radio_max
// Output: Translated PWM value
int
AP_RC_Channel::apply_curve(int pwm)
{
float scale;
int index1, index2;
if (_channel_curve != NULL)
{
if (_channel_curve[0] > 0) // If the length of the curve isn't zero then use it
{
// Calculate the index into the channel curve table
scale = ((float)(pwm - radio_min) /
(float)(radio_max - radio_min)) *
((float)_channel_curve[0]-1);
index1 = (int)scale; // get the index
scale -= (float)index1; // scale now has the remainder for later
if (index1 < 0) { // If the PWM value below our range then clamp to lowest table entry
index1 = 0;
scale = 0.0;
}
index2 = index1 + 1; // Point to the next entry beyond our current for interpolation
if (index2 >= _channel_curve[0]) { // If we are beyond the end then clamp to highest entry
index2 = _channel_curve[0] - 1;
if (index1 >= _channel_curve[0]) { // Also check index 1 and clamp if necessary
index1 = _channel_curve[0] -1;
}
}
// Do the lookup and interpolation
index1++; // curve values start at entry 1
index2++;
pwm = ((_channel_curve[index1] *
(1 - scale)) + (_channel_curve[index2] *
scale)); // Get the pwm value from the curve and interpolate - done
}
}
return pwm; //
}
//-------------------------------------------------------------------------------
// read input from APM_RC - create a control_in value
void
AP_RC_Channel::set_pwm(int pwm)
{
// Serial.print(pwm,DEC);
// Apply the curve - if any
pwm = apply_curve(pwm);
if(_filter){
if(radio_in == 0)
radio_in = pwm;
else
radio_in = ((pwm + radio_in) >> 1); // Small filtering
}else{
radio_in = pwm;
}
if(_type == RANGE){
//Serial.print("range ");
control_in = pwm_to_range();
control_in = (control_in < dead_zone) ? 0 : control_in;
}else{
control_in = pwm_to_angle();
control_in = (abs(control_in) < dead_zone) ? 0 : control_in;
}
}
int
AP_RC_Channel::control_mix(float value)
{
return (1 - abs(control_in / _high)) * value + control_in;
}
// are we below a threshold?
bool
AP_RC_Channel::get_failsafe(void)
{
return (radio_in < (radio_min - 50));
}
// returns just the PWM without the offset from radio_min
void
AP_RC_Channel::calc_pwm(void)
{
if(_type == RANGE){
pwm_out = range_to_pwm();
radio_out = pwm_out + radio_min;
}else{
pwm_out = angle_to_pwm();
radio_out = pwm_out + radio_trim;
}
// radio_out = constrain(radio_out, radio_min, radio_max);
}
// ------------------------------------------
void
AP_RC_Channel::load_eeprom(void)
{
radio_min = eeprom_read_word((uint16_t *) _address);
radio_max = eeprom_read_word((uint16_t *) (_address + 2));
load_trim();
}
void
AP_RC_Channel::save_eeprom(void)
{
eeprom_write_word((uint16_t *) _address, radio_min);
eeprom_write_word((uint16_t *) (_address + 2), radio_max);
save_trim();
}
// ------------------------------------------
void
AP_RC_Channel::save_trim(void)
{
eeprom_write_word((uint16_t *) (_address + 4), radio_trim);
//_ee.write_int((_address + 4), radio_trim);
}
void
AP_RC_Channel::load_trim(void)
{
radio_trim = eeprom_read_word((uint16_t *) (_address + 4));
//_ee.write_int((_address + 4), radio_trim);
}
// ------------------------------------------
void
AP_RC_Channel::zero_min_max()
{
radio_min = radio_max = radio_in;
}
void
AP_RC_Channel::update_min_max()
{
radio_min = min(radio_min, radio_in);
radio_max = max(radio_max, radio_in);
}
// ------------------------------------------
int16_t
AP_RC_Channel::pwm_to_angle()
{
if(radio_in < radio_trim)
return _reverse * ((long)_high * (long)(radio_in - radio_trim)) / (long)(radio_trim - radio_min);
else
return _reverse * ((long)_high * (long)(radio_in - radio_trim)) / (long)(radio_max - radio_trim);
//return _reverse * _high * ((float)(radio_in - radio_trim) / (float)(radio_max - radio_trim));
//return _reverse * _high * ((float)(radio_in - radio_trim) / (float)(radio_trim - radio_min));
}
int16_t
AP_RC_Channel::angle_to_pwm()
{
if(_reverse == -1)
{
if(servo_out < 0)
return ( -1 * ((long)servo_out * (long)(radio_max - radio_trim)) / (long)_high);
else
return ( -1 * ((long)servo_out * (long)(radio_trim - radio_min)) / (long)_high);
} else {
if(servo_out > 0)
return ((long)servo_out * (long)(radio_max - radio_trim)) / (long)_high;
else
return ((long)servo_out * (long)(radio_trim - radio_min)) / (long)_high;
}
//return (((float)servo_out / (float)_high) * (float)(radio_max - radio_trim));
//return (((float)servo_out / (float)_high) * (float)(radio_trim - radio_min));
}
// ------------------------------------------
int16_t
AP_RC_Channel::pwm_to_range()
{
//return (_low + ((_high - _low) * ((float)(radio_in - radio_min) / (float)(radio_max - radio_min))));
return (_low + ((long)(_high - _low) * (long)(radio_in - radio_min)) / (long)(radio_max - radio_min));
}
int16_t
AP_RC_Channel::range_to_pwm()
{
//return (((float)(servo_out - _low) / (float)(_high - _low)) * (float)(radio_max - radio_min));
return ((long)(servo_out - _low) * (long)(radio_max - radio_min)) / (long)(_high - _low);
}
// ------------------------------------------
float
AP_RC_Channel::norm_input()
{
if(radio_in < radio_trim)
return _reverse * (float)(radio_in - radio_trim) / (float)(radio_trim - radio_min);
else
return _reverse * (float)(radio_in - radio_trim) / (float)(radio_max - radio_trim);
}
float
AP_RC_Channel::norm_output()
{
if(radio_out < radio_trim)
return (float)(radio_out - radio_trim) / (float)(radio_trim - radio_min);
else
return (float)(radio_out - radio_trim) / (float)(radio_max - radio_trim);
}