ardupilot/libraries/AP_HAL/UARTDriver.cpp

227 lines
5.5 KiB
C++
Raw Normal View History

/*
implement generic UARTDriver code, including port locking
*/
#include "AP_HAL.h"
#include <AP_Logger/AP_Logger.h>
void AP_HAL::UARTDriver::begin(uint32_t baud, uint16_t rxSpace, uint16_t txSpace)
{
if (lock_write_key != 0) {
// silently fail
return;
}
return _begin(baud, rxSpace, txSpace);
}
void AP_HAL::UARTDriver::begin(uint32_t baud)
{
return begin(baud, 0, 0);
}
/*
lock the uart for exclusive use by write_locked() and read_locked() with the right key
*/
bool AP_HAL::UARTDriver::lock_port(uint32_t write_key, uint32_t read_key)
{
if (lock_write_key != 0 && write_key != lock_write_key && write_key != 0) {
// someone else is using it
return false;
}
if (lock_read_key != 0 && read_key != lock_read_key && read_key != 0) {
// someone else is using it
return false;
}
lock_write_key = write_key;
lock_read_key = read_key;
return true;
}
void AP_HAL::UARTDriver::begin_locked(uint32_t baud, uint16_t rxSpace, uint16_t txSpace, uint32_t key)
{
if (lock_write_key != 0 && key != lock_write_key) {
// silently fail
return;
}
return _begin(baud, rxSpace, txSpace);
}
/*
write to a locked port. If port is locked and key is not correct then 0 is returned
and write is discarded. All writes are non-blocking
*/
size_t AP_HAL::UARTDriver::write_locked(const uint8_t *buffer, size_t size, uint32_t key)
{
if (lock_write_key != 0 && key != lock_write_key) {
return 0;
}
return _write(buffer, size);
}
/*
read from a locked port. If port is locked and key is not correct then -1 is returned
*/
ssize_t AP_HAL::UARTDriver::read_locked(uint8_t *buf, size_t count, uint32_t key)
{
if (lock_read_key != 0 && key != lock_read_key) {
return 0;
}
ssize_t ret = _read(buf, count);
#if AP_UART_MONITOR_ENABLED
auto monitor = _monitor_read_buffer;
if (monitor != nullptr && ret > 0) {
monitor->write(buf, ret);
}
#endif
return ret;
}
uint32_t AP_HAL::UARTDriver::available_locked(uint32_t key)
{
if (lock_read_key != 0 && lock_read_key != key) {
return 0;
}
return _available();
}
size_t AP_HAL::UARTDriver::write(const uint8_t *buffer, size_t size)
{
if (lock_write_key != 0) {
return 0;
}
return _write(buffer, size);
}
size_t AP_HAL::UARTDriver::write(uint8_t c)
{
return write(&c, 1);
}
size_t AP_HAL::UARTDriver::write(const char *str)
{
return write((const uint8_t *)str, strlen(str));
}
ssize_t AP_HAL::UARTDriver::read(uint8_t *buffer, uint16_t count)
{
return read_locked(buffer, count, 0);
}
bool AP_HAL::UARTDriver::read(uint8_t &b)
{
ssize_t n = read(&b, 1);
return n > 0;
}
int16_t AP_HAL::UARTDriver::read(void)
{
uint8_t b;
if (!read(b)) {
return -1;
}
return b;
}
uint32_t AP_HAL::UARTDriver::available()
{
if (lock_read_key != 0) {
return 0;
}
return _available();
}
void AP_HAL::UARTDriver::end()
{
if (lock_read_key != 0 || lock_write_key != 0) {
return;
}
_end();
}
void AP_HAL::UARTDriver::flush()
{
if (lock_read_key != 0 || lock_write_key != 0) {
return;
}
_flush();
}
bool AP_HAL::UARTDriver::discard_input()
{
if (lock_read_key != 0) {
return false;
}
return _discard_input();
}
/*
default implementation of receive_time_constraint_us() will be used
for subclasses that don't implement the call (eg. network
sockets). Best we can do is to use the current timestamp as we don't
know the transport delay
*/
uint64_t AP_HAL::UARTDriver::receive_time_constraint_us(uint16_t nbytes)
{
return AP_HAL::micros64();
}
2024-03-15 11:18:55 -03:00
// Helper to check if flow control is enabled given the passed setting
bool AP_HAL::UARTDriver::flow_control_enabled(enum flow_control flow_control_setting) const
{
switch(flow_control_setting) {
case FLOW_CONTROL_ENABLE:
case FLOW_CONTROL_AUTO:
return true;
case FLOW_CONTROL_DISABLE:
case FLOW_CONTROL_RTS_DE:
break;
}
return false;
}
uint8_t AP_HAL::UARTDriver::get_parity(void)
{
return AP_HAL::UARTDriver::parity;
}
2024-03-15 11:18:55 -03:00
#if HAL_UART_STATS_ENABLED
// Take cumulative bytes and return the change since last call
uint32_t AP_HAL::UARTDriver::StatsTracker::ByteTracker::update(uint32_t bytes)
{
const uint32_t change = bytes - last_bytes;
last_bytes = bytes;
return change;
}
#if HAL_LOGGING_ENABLED
// Write UART log message
void AP_HAL::UARTDriver::log_stats(const uint8_t inst, StatsTracker &stats, const uint32_t dt_ms)
{
// get totals
const uint32_t total_tx_bytes = get_total_tx_bytes();
const uint32_t total_rx_bytes = get_total_rx_bytes();
// Don't log if we have never seen data
if ((total_tx_bytes == 0) && (total_rx_bytes == 0)) {
// This could be wrong if we happen to wrap both tx and rx to zero at exactly the same time
// In that very unlikely case one log will be missed
return;
}
// Update tracking
const uint32_t tx_bytes = stats.tx.update(total_tx_bytes);
const uint32_t rx_bytes = stats.rx.update(total_rx_bytes);
// Assemble struct and log
struct log_UART pkt {
LOG_PACKET_HEADER_INIT(LOG_UART_MSG),
time_us : AP_HAL::micros64(),
instance : inst,
tx_rate : float((tx_bytes * 1000) / dt_ms),
rx_rate : float((rx_bytes * 1000) / dt_ms),
};
AP::logger().WriteBlock(&pkt, sizeof(pkt));
}
#endif // HAL_LOGGING_ENABLED
#endif // HAL_UART_STATS_ENABLED