ardupilot/ArduSub/control_althold.cpp

123 lines
5.5 KiB
C++
Raw Normal View History

2016-01-14 15:30:56 -04:00
#include "Sub.h"
/*
* control_althold.pde - init and run calls for althold, flight mode
*/
// althold_init - initialise althold controller
bool Sub::althold_init()
{
if(!control_check_barometer()) {
return false;
}
2021-04-27 03:50:06 -03:00
// initialize vertical maximum speeds and acceleration
// sets the maximum speed up and down returned by position controller
2021-04-27 03:50:06 -03:00
pos_control.set_max_speed_accel_z(-get_pilot_speed_dn(), g.pilot_speed_up, g.pilot_accel_z);
pos_control.set_correction_speed_accel_z(-get_pilot_speed_dn(), g.pilot_speed_up, g.pilot_accel_z);
// initialise position and desired velocity
2022-04-13 22:10:59 -03:00
pos_control.init_z_controller_stopping_point();
if(prev_control_mode != control_mode_t::STABILIZE) {
last_roll = 0;
last_pitch = 0;
}
last_pilot_heading = ahrs.yaw_sensor;
2022-04-13 22:10:59 -03:00
last_input_ms = AP_HAL::millis();
return true;
}
2022-04-13 22:10:59 -03:00
void Sub::handle_attitude()
{
uint32_t tnow = AP_HAL::millis();
// initialize vertical speeds and acceleration
2021-04-27 03:50:06 -03:00
pos_control.set_max_speed_accel_z(-get_pilot_speed_dn(), g.pilot_speed_up, g.pilot_accel_z);
motors.set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
// get pilot desired lean angles
2022-04-13 22:10:59 -03:00
float target_roll, target_pitch, target_yaw;
// Check if set_attitude_target_no_gps is valid
if (tnow - sub.set_attitude_target_no_gps.last_message_ms < 5000) {
Quaternion(
set_attitude_target_no_gps.packet.q
).to_euler(
target_roll,
target_pitch,
target_yaw
);
2022-04-13 22:10:59 -03:00
target_roll = 100 * degrees(target_roll);
target_pitch = 100 * degrees(target_pitch);
target_yaw = 100 * degrees(target_yaw);
attitude_control.input_euler_angle_roll_pitch_yaw(target_roll, target_pitch, target_yaw, true);
} else {
// If we don't have a mavlink attitude target, we use the pilot's input instead
get_pilot_desired_lean_angles(channel_roll->get_control_in(), channel_pitch->get_control_in(), target_roll, target_pitch, attitude_control.get_althold_lean_angle_max());
target_yaw = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
if (abs(target_roll) > 50 || abs(target_pitch) > 50 || abs(target_yaw) > 50) {
last_roll = ahrs.roll_sensor;
last_pitch = ahrs.pitch_sensor;
last_pilot_heading = ahrs.yaw_sensor;
last_input_ms = tnow;
attitude_control.input_rate_bf_roll_pitch_yaw(target_roll, target_pitch, target_yaw);
} else if (tnow < last_input_ms + 250) {
// just brake for a few mooments so we don't bounce
attitude_control.input_rate_bf_roll_pitch_yaw(0, 0, 0);
} else {
// Lock attitude
attitude_control.input_euler_angle_roll_pitch_yaw(last_roll, last_pitch, last_pilot_heading, true);
}
}
2022-04-13 22:10:59 -03:00
}
2022-04-13 22:10:59 -03:00
// althold_run - runs the althold controller
// should be called at 100hz or more
void Sub::althold_run()
{
// When unarmed, disable motors and stabilization
if (!motors.armed()) {
motors.set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE);
// Sub vehicles do not stabilize roll/pitch/yaw when not auto-armed (i.e. on the ground, pilot has never raised throttle)
attitude_control.set_throttle_out(0.5,true,g.throttle_filt);
attitude_control.relax_attitude_controllers();
pos_control.relax_z_controller(motors.get_throttle_hover());
last_roll = 0;
last_pitch = 0;
last_pilot_heading = ahrs.yaw_sensor;
2022-04-13 22:10:59 -03:00
return;
}
2022-04-13 22:10:59 -03:00
handle_attitude();
2022-04-13 22:10:59 -03:00
control_depth();
}
void Sub::control_depth() {
2022-04-13 22:10:59 -03:00
// We rotate the RC inputs to the earth frame to check if the user is giving an input that would change the depth.
// Output the Z controller + pilot input to all motors.
Vector3f earth_frame_rc_inputs = ahrs.get_rotation_body_to_ned() * Vector3f(-channel_forward->norm_input(), -channel_lateral->norm_input(), (2.0f*(-0.5f+channel_throttle->norm_input())));
2022-04-13 22:10:59 -03:00
float target_climb_rate_cm_s = get_pilot_desired_climb_rate(500 + g.pilot_speed_up * earth_frame_rc_inputs.z);
target_climb_rate_cm_s = constrain_float(target_climb_rate_cm_s, -get_pilot_speed_dn(), g.pilot_speed_up);
2022-04-13 22:10:59 -03:00
pos_control.set_pos_target_z_from_climb_rate_cm(target_climb_rate_cm_s);
// desired_climb_rate returns 0 when within the deadzone.
//we allow full control to the pilot, but as soon as there's no input, we handle being at surface/bottom
if (fabsf(target_climb_rate_cm_s) < 0.05f) {
if (ap.at_surface) {
pos_control.set_pos_target_z_cm(MIN(pos_control.get_pos_target_z_cm(), g.surface_depth - 5.0f)); // set target to 5 cm below surface level
} else if (ap.at_bottom) {
pos_control.set_pos_target_z_cm(MAX(inertial_nav.get_altitude() + 10.0f, pos_control.get_pos_target_z_cm())); // set target to 10 cm above bottom
2017-02-27 14:06:55 -04:00
}
}
pos_control.update_z_controller();
2022-04-13 22:10:59 -03:00
// Read the output of the z controller and rotate it so it always points up
Vector3f throttle_vehicle_frame = ahrs.get_rotation_body_to_ned().transposed() * Vector3f(0, 0, motors.get_throttle_in_bidirectional());
//TODO: scale throttle with the ammount of thrusters in the given direction
attitude_control.set_throttle_out(throttle_vehicle_frame.z + channel_throttle->norm_input(), false, g.throttle_filt);
2022-04-13 22:10:59 -03:00
motors.set_forward(-throttle_vehicle_frame.x + channel_forward->norm_input());
motors.set_lateral(-throttle_vehicle_frame.y + channel_lateral->norm_input());
}