ardupilot/ArduPlane/radio.pde

303 lines
10 KiB
Plaintext
Raw Normal View History

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
//Function that will read the radio data, limit servos and trigger a failsafe
// ----------------------------------------------------------------------------
static byte failsafeCounter = 0; // we wait a second to take over the throttle and send the plane circling
static void init_rc_in()
{
// set rc reversing
update_servo_switches();
// set rc channel ranges
g.channel_roll.set_angle(SERVO_MAX);
g.channel_pitch.set_angle(SERVO_MAX);
g.channel_rudder.set_angle(SERVO_MAX);
g.channel_throttle.set_range(0, 100);
// set rc dead zones
g.channel_roll.dead_zone = 60;
g.channel_pitch.dead_zone = 60;
g.channel_rudder.dead_zone = 60;
g.channel_throttle.dead_zone = 6;
//set auxiliary ranges
if (g_rc_function[RC_Channel_aux::k_mount_yaw]) {
g_rc_function[RC_Channel_aux::k_mount_yaw]->set_range(
g_rc_function[RC_Channel_aux::k_mount_yaw]->angle_min / 10,
g_rc_function[RC_Channel_aux::k_mount_yaw]->angle_max / 10);
}
if (g_rc_function[RC_Channel_aux::k_mount_pitch]) {
g_rc_function[RC_Channel_aux::k_mount_pitch]->set_range(
g_rc_function[RC_Channel_aux::k_mount_pitch]->angle_min / 10,
g_rc_function[RC_Channel_aux::k_mount_pitch]->angle_max / 10);
}
if (g_rc_function[RC_Channel_aux::k_mount_roll]) {
g_rc_function[RC_Channel_aux::k_mount_roll]->set_range(
g_rc_function[RC_Channel_aux::k_mount_roll]->angle_min / 10,
g_rc_function[RC_Channel_aux::k_mount_roll]->angle_max / 10);
}
if (g_rc_function[RC_Channel_aux::k_cam_trigger]) {
g_rc_function[RC_Channel_aux::k_cam_trigger]->set_range(
g_rc_function[RC_Channel_aux::k_cam_trigger]->angle_min / 10,
g_rc_function[RC_Channel_aux::k_cam_trigger]->angle_max / 10);
}
if (g_rc_function[RC_Channel_aux::k_cam_open]) {
g_rc_function[RC_Channel_aux::k_cam_open]->set_range(
g_rc_function[RC_Channel_aux::k_cam_open]->angle_min / 10,
g_rc_function[RC_Channel_aux::k_cam_open]->angle_max / 10);
}
if (g_rc_function[RC_Channel_aux::k_flap]) {
g_rc_function[RC_Channel_aux::k_flap]->set_range(0,100);
}
if (g_rc_function[RC_Channel_aux::k_flap_auto]) {
g_rc_function[RC_Channel_aux::k_flap_auto]->set_range(0,100);
}
if (g_rc_function[RC_Channel_aux::k_aileron]) {
g_rc_function[RC_Channel_aux::k_aileron]->set_angle(SERVO_MAX);
}
if (g_rc_function[RC_Channel_aux::k_flaperon]) {
g_rc_function[RC_Channel_aux::k_flaperon]->set_range(0,100);
}
if (g_rc_function[RC_Channel_aux::k_egg_drop]) {
g_rc_function[RC_Channel_aux::k_egg_drop]->set_range(0,100);
}
}
static void init_rc_out()
{
APM_RC.OutputCh(CH_1, g.channel_roll.radio_trim); // Initialization of servo outputs
APM_RC.OutputCh(CH_2, g.channel_pitch.radio_trim);
APM_RC.OutputCh(CH_3, g.channel_throttle.radio_min);
APM_RC.OutputCh(CH_4, g.channel_rudder.radio_trim);
APM_RC.OutputCh(CH_5, g.rc_5.radio_trim);
APM_RC.OutputCh(CH_6, g.rc_6.radio_trim);
APM_RC.OutputCh(CH_7, g.rc_7.radio_trim);
APM_RC.OutputCh(CH_8, g.rc_8.radio_trim);
APM_RC.Init(); // APM Radio initialization
APM_RC.OutputCh(CH_1, g.channel_roll.radio_trim); // Initialization of servo outputs
APM_RC.OutputCh(CH_2, g.channel_pitch.radio_trim);
APM_RC.OutputCh(CH_3, g.channel_throttle.radio_min);
APM_RC.OutputCh(CH_4, g.channel_rudder.radio_trim);
APM_RC.OutputCh(CH_5, g.rc_5.radio_trim);
APM_RC.OutputCh(CH_6, g.rc_6.radio_trim);
APM_RC.OutputCh(CH_7, g.rc_7.radio_trim);
APM_RC.OutputCh(CH_8, g.rc_8.radio_trim);
}
static void read_radio()
{
ch1_temp = APM_RC.InputCh(CH_ROLL);
ch2_temp = APM_RC.InputCh(CH_PITCH);
if(g.mix_mode == 0){
g.channel_roll.set_pwm(ch1_temp);
g.channel_pitch.set_pwm(ch2_temp);
}else{
g.channel_roll.set_pwm(BOOL_TO_SIGN(g.reverse_elevons) * (BOOL_TO_SIGN(g.reverse_ch2_elevon) * int(ch2_temp - elevon2_trim) - BOOL_TO_SIGN(g.reverse_ch1_elevon) * int(ch1_temp - elevon1_trim)) / 2 + 1500);
g.channel_pitch.set_pwm((BOOL_TO_SIGN(g.reverse_ch2_elevon) * int(ch2_temp - elevon2_trim) + BOOL_TO_SIGN(g.reverse_ch1_elevon) * int(ch1_temp - elevon1_trim)) / 2 + 1500);
}
g.channel_throttle.set_pwm(APM_RC.InputCh(CH_3));
g.channel_rudder.set_pwm(APM_RC.InputCh(CH_4));
g.rc_5.set_pwm(APM_RC.InputCh(CH_5));
g.rc_6.set_pwm(APM_RC.InputCh(CH_6));
g.rc_7.set_pwm(APM_RC.InputCh(CH_7));
g.rc_8.set_pwm(APM_RC.InputCh(CH_8));
// TO DO - go through and patch throttle reverse for RC_Channel library compatibility
#if THROTTLE_REVERSE == 1
radio_in[CH_THROTTLE] = radio_max(CH_THROTTLE) + radio_min(CH_THROTTLE) - radio_in[CH_THROTTLE];
#endif
control_failsafe(g.channel_throttle.radio_in);
g.channel_throttle.servo_out = g.channel_throttle.control_in;
if (g.channel_throttle.servo_out > 50) {
if(g.airspeed_enabled == true) {
airspeed_nudge = (g.flybywire_airspeed_max * 100 - g.airspeed_cruise) * ((g.channel_throttle.norm_input()-0.5) / 0.5);
} else {
throttle_nudge = (g.throttle_max - g.throttle_cruise) * ((g.channel_throttle.norm_input()-0.5) / 0.5);
}
} else {
airspeed_nudge = 0;
throttle_nudge = 0;
}
/*
Serial.printf_P(PSTR("OUT 1: %d\t2: %d\t3: %d\t4: %d \n"),
g.rc_1.control_in,
g.rc_2.control_in,
g.rc_3.control_in,
g.rc_4.control_in);
*/
}
static void control_failsafe(uint16_t pwm)
{
if(g.throttle_fs_enabled == 0)
return;
// Check for failsafe condition based on loss of GCS control
if (rc_override_active) {
if(millis() - rc_override_fs_timer > FAILSAFE_SHORT_TIME) {
ch3_failsafe = true;
} else {
ch3_failsafe = false;
}
//Check for failsafe and debounce funky reads
} else if (g.throttle_fs_enabled) {
if (pwm < (unsigned)g.throttle_fs_value){
// we detect a failsafe from radio
// throttle has dropped below the mark
failsafeCounter++;
if (failsafeCounter == 9){
SendDebug_P("MSG FS ON ");
SendDebugln(pwm, DEC);
}else if(failsafeCounter == 10) {
ch3_failsafe = true;
}else if (failsafeCounter > 10){
failsafeCounter = 11;
}
}else if(failsafeCounter > 0){
// we are no longer in failsafe condition
// but we need to recover quickly
failsafeCounter--;
if (failsafeCounter > 3){
failsafeCounter = 3;
}
if (failsafeCounter == 1){
SendDebug_P("MSG FS OFF ");
SendDebugln(pwm, DEC);
}else if(failsafeCounter == 0) {
ch3_failsafe = false;
}else if (failsafeCounter <0){
failsafeCounter = -1;
}
}
}
}
static void trim_control_surfaces()
{
read_radio();
// Store control surface trim values
// ---------------------------------
if(g.mix_mode == 0){
g.channel_roll.radio_trim = g.channel_roll.radio_in;
g.channel_pitch.radio_trim = g.channel_pitch.radio_in;
g.channel_rudder.radio_trim = g.channel_rudder.radio_in;
if (g_rc_function[RC_Channel_aux::k_aileron] != NULL) g_rc_function[RC_Channel_aux::k_aileron]->radio_trim = g_rc_function[RC_Channel_aux::k_aileron]->radio_in; // Second aileron channel
}else{
elevon1_trim = ch1_temp;
elevon2_trim = ch2_temp;
//Recompute values here using new values for elevon1_trim and elevon2_trim
//We cannot use radio_in[CH_ROLL] and radio_in[CH_PITCH] values from read_radio() because the elevon trim values have changed
uint16_t center = 1500;
g.channel_roll.radio_trim = center;
g.channel_pitch.radio_trim = center;
}
// save to eeprom
g.channel_roll.save_eeprom();
g.channel_pitch.save_eeprom();
g.channel_throttle.save_eeprom();
g.channel_rudder.save_eeprom();
if (g_rc_function[RC_Channel_aux::k_aileron] != NULL) g_rc_function[RC_Channel_aux::k_aileron]->save_eeprom();
}
static void trim_radio()
{
for (int y = 0; y < 30; y++) {
read_radio();
}
// Store the trim values
// ---------------------
if(g.mix_mode == 0){
g.channel_roll.radio_trim = g.channel_roll.radio_in;
g.channel_pitch.radio_trim = g.channel_pitch.radio_in;
//g.channel_throttle.radio_trim = g.channel_throttle.radio_in;
g.channel_rudder.radio_trim = g.channel_rudder.radio_in;
if (g_rc_function[RC_Channel_aux::k_aileron] != NULL) g_rc_function[RC_Channel_aux::k_aileron]->radio_trim = g_rc_function[RC_Channel_aux::k_aileron]->radio_in; // Second aileron channel
} else {
elevon1_trim = ch1_temp;
elevon2_trim = ch2_temp;
uint16_t center = 1500;
g.channel_roll.radio_trim = center;
g.channel_pitch.radio_trim = center;
g.channel_rudder.radio_trim = g.channel_rudder.radio_in;
}
// save to eeprom
g.channel_roll.save_eeprom();
g.channel_pitch.save_eeprom();
//g.channel_throttle.save_eeprom();
g.channel_rudder.save_eeprom();
if (g_rc_function[RC_Channel_aux::k_aileron] != NULL) g_rc_function[RC_Channel_aux::k_aileron]->save_eeprom();
}
// map a function to a servo channel
static void aux_servo_out(RC_Channel_aux* ch, unsigned char ch_nr)
{
switch(ch->function)
{
case RC_Channel_aux::k_none: // disabled
return;
break;
case RC_Channel_aux::k_mount_yaw: // mount yaw (pan)
case RC_Channel_aux::k_mount_pitch: // mount pitch (tilt)
case RC_Channel_aux::k_mount_roll: // mount roll
case RC_Channel_aux::k_cam_trigger: // camera trigger
case RC_Channel_aux::k_cam_open: // camera open
case RC_Channel_aux::k_flap: // flaps
case RC_Channel_aux::k_flap_auto: // flaps automated
case RC_Channel_aux::k_aileron: // aileron
case RC_Channel_aux::k_flaperon: // flaperon (flaps and aileron combined, needs two independent servos one for each wing)
case RC_Channel_aux::k_egg_drop: // egg drop
case RC_Channel_aux::k_nr_aux_servo_functions: // dummy, just to avoid a compiler warning
break;
case RC_Channel_aux::k_manual: // manual
ch->radio_out = ch->radio_in;
break;
}
APM_RC.OutputCh(ch_nr, ch->radio_out);
}
// update the g_rc_function array from pointers to rc_x channels
static void update_aux_servo_function()
{
RC_Channel_aux::Aux_servo_function_t aux_servo_function[NUM_CHANNELS]; // the function of the aux. servos
aux_servo_function[CH_5] = (RC_Channel_aux::Aux_servo_function_t)g.rc_5.function.get();
aux_servo_function[CH_6] = (RC_Channel_aux::Aux_servo_function_t)g.rc_6.function.get();
aux_servo_function[CH_7] = (RC_Channel_aux::Aux_servo_function_t)g.rc_7.function.get();
aux_servo_function[CH_8] = (RC_Channel_aux::Aux_servo_function_t)g.rc_8.function.get();
// Assume that no auxiliary function is used
for (int i = 0; i < RC_Channel_aux::k_nr_aux_servo_functions ; i++)
{
g_rc_function[i] = NULL;
}
// assign the RC channel to each function
g_rc_function[aux_servo_function[CH_5]] = &g.rc_5;
g_rc_function[aux_servo_function[CH_6]] = &g.rc_6;
g_rc_function[aux_servo_function[CH_7]] = &g.rc_7;
g_rc_function[aux_servo_function[CH_8]] = &g.rc_8;
#if CAMERA == ENABLED
camera_mount.update_mount_type();
#endif
}